Chin. Phys. Lett.  2015, Vol. 32 Issue (4): 040301    DOI: 10.1088/0256-307X/32/4/040301
GENERAL |
The Noncommutative Landau Problem in Podolsky's Generalized Electrodynamics
DIAO Xin-Feng1**, LONG Chao-Yun2**, KONG Bo1, LONG Zheng-Wen2
1School of Physics and Electronic Sciences, Guizhou Normal College, Guiyang 550018
2Department of Physics, Guizhou University, Guiyang 550025
Cite this article:   
DIAO Xin-Feng, LONG Chao-Yun, KONG Bo et al  2015 Chin. Phys. Lett. 32 040301
Download: PDF(455KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Landau problem in Podolsky's generalized electrodynamics is studied by the method of diagonalization in noncommutative phase space and we find that the different noncommutative effects for a certain system led by the nonuniqueness of generalized Bopp shift can be avoided. The exact energy eigenvalues are found, and the result shows that the energy spectra are generically non-degenerate. Furthermore, we obtain the special energy spectra of noncommutative space and commutative space.
Received: 07 December 2014      Published: 30 April 2015
PACS:  03.65.-w (Quantum mechanics)  
  11.10.Nx (Noncommutative field theory)  
  02.40.Gh (Noncommutative geometry)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/4/040301       OR      https://cpl.iphy.ac.cn/Y2015/V32/I4/040301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DIAO Xin-Feng
LONG Chao-Yun
KONG Bo
LONG Zheng-Wen
[1] Connes A, Douglas M R and Schwarz A 1998 J. High Energy Phys. 9802 003
[2] Douglas M R and Hull C M 1998 J. High Energy Phys. 9802 008
[3] Ardalan F, Arfaei H and Sheikh-Jabbari M M 1999 J. High Energy Phys. 9902 016
[4] Jing J, Zhao S H, Chen J F and Long Z W 2008 Eur. Phys. J. C 54 685
[5] Chu S C and Ho P M 2000 Nucl. Phys. B 568 447
[6] Zhang J Z 2004 Phys. Lett. B 584 204
[7] Seiberg N and Witten E 1999 J. High Energy Phys. 9909 032
[8] Dayi O F and Jellal A 2002 J. Math. Phys. 43 4592
[9] Duval C and Horv'athy P A 2001 J. Phys. A: Math. Gen. 34 10097
[10] Alvarez P D, Gomis J, Kamimura K and Plyushchay M S 2008 Phys. Lett. B 659 906
[11] Dayi O F and Kelleyane L T 2002 Mod. Phys. Lett. A 17 1937
[12] Gamboa J, Loewe M, Loewe F M, Mendez F and Rojas J C 2001 Mod. Phys. Lett. A 16 2075
[13] Bellucci S and Yeranyan A 2005 Phys. Lett. B 609 418
[14] Gamboa J, Loewe M and Rojas J C 2001 Phys. Rev. D 64 067901
[15] Li K, Wang J H and Chen C Y 2005 Mod. Phys. Lett. A 20 2165
[16] Marco M and Alfredo M 2009 Phys. Rev. D 79 087703
[17] Bertolami O, Rosa J G, de Aragao C M L, Castorina P and Zappala D 2005 Phys. Rev. D 72 025010
[18] Bastos C and Bertolarmi O 2008 Phys. Lett. A 372 5556
[19] Ben G J, Gangopadhyay S and Scholtz F G 2009 Europhys. Lett. 86 51001
[20] Li X C, Yang Y and Fan H Y 2013 Acta Phys. Sin. 62 080301 (in Chinese)
[21] Fan H Y, Lou S Y and Hu L Y 2013 Chin. Phys. Lett. 30 090304
[22] Mohammad R B, Seyed M A and Fahimeh N 2014 Chin. Phys. Lett. 31 070303
Related articles from Frontiers Journals
[1] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 040301
[2] Haodong Wang, Peihan Lei, Xiaoyu Mao, Xi Kong, Xiangyu Ye, Pengfei Wang, Ya Wang, Xi Qin, Jan Meijer, Hualing Zeng, Fazhan Shi, and Jiangfeng Du. Magnetic Phase Transition in Two-Dimensional CrBr$_3$ Probed by a Quantum Sensor[J]. Chin. Phys. Lett., 2022, 39(4): 040301
[3] L. Jin. Unitary Scattering Protected by Pseudo-Hermiticity[J]. Chin. Phys. Lett., 2022, 39(3): 040301
[4] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 040301
[5] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 040301
[6] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 040301
[7] Peiran Yin, Xiaohui Luo, Liang Zhang, Shaochun Lin, Tian Tian, Rui Li, Zizhe Wang, Changkui Duan, Pu Huang, and Jiangfeng Du. Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops[J]. Chin. Phys. Lett., 2020, 37(10): 040301
[8] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 040301
[9] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 040301
[10] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 040301
[11] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 040301
[12] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 040301
[13] Xin Zhao, Bo-Yang Liu, Ying Yi, Hong-Yi Dai, Ming Zhang. Impact of Distribution Fairness Degree and Entanglement Degree on Cooperation[J]. Chin. Phys. Lett., 2018, 35(3): 040301
[14] F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 040301
[15] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 040301
Viewed
Full text


Abstract