GENERAL |
|
|
|
|
Realization of the Infinite-Dimensional 3-Algebras in the Calogero–Moser Model |
YANG Yan-Xin1,2, YAO Shao-Kui2, ZHANG Chun-Hong2, ZHAO Wei-Zhong2** |
1College of Arts and Sciences, Shanxi Agricultural University, Taigu 030801
2School of Mathematical Sciences, Capital Normal University, Beijing 100048 |
|
Cite this article: |
YANG Yan-Xin, YAO Shao-Kui, ZHANG Chun-Hong et al 2015 Chin. Phys. Lett. 32 040202 |
|
|
Abstract We investigate realization of the infinite-dimensional 3-algebras in the classical Calogero–Moser model. In terms of the Lax matrix of the Calogero–Moser model and the Nambu 3-brackets in which the variables are the coordinates qi, and canonically conjugate momenta pi and the coupling parameter β are an extra auxiliary phase-space parameter, we present the realization of the Virasoro–Witt, w∞ and SDiff(T2) 3-algebras, respectively.
|
|
Received: 31 December 2014
Published: 30 April 2015
|
|
PACS: |
02.30.Ik
|
(Integrable systems)
|
|
02.20.Tw
|
(Infinite-dimensional Lie groups)
|
|
11.25.Hf
|
(Conformal field theory, algebraic structures)
|
|
|
|
|
[1] Calogero F 1971 J. Math. Phys. 12 419
[2] Moser J 1975 Adv. Math. 16 197
[3] Sutherland B 1972 Phys. Rev. A 5 1372
[4] Olshanetsky M A and Perelomov A M 1981 Phys. Rep. 71 313
[5] D'Hoker E and Phong D H 1998 Nucl. Phys. B 530 537
[6] Bordner A J, Corrigan E and Sasaki R 1998 Prog. Theor. Phys. 100 1107
[7] Khastgir S P and Sasaki R 2001 Phys. Lett. A 279 189
[8] Aniceto I, Avan J and Jevicki A 2010 J. Phys. A: Math. Theor. 43 185201
[9] Avan J and Billey E 1995 Phys. Lett. A 198 183
[10] Hikami K and Wadati M 1994 Phys. Rev. Lett. 73 1191
[11] Nambu Y 1973 Phys. Rev. D 7 2405
[12] Takhtajan L 1994 Commun. Math. Phys. 160 295
[13] Ogawa T and Sagae T 2000 Int. J. Theor. Phys. 39 2875
[14] Curtright T, Fairlie D and Zachos C 2008 Phys. Lett. B 666 386
[15] Curtright T, Fairlie D, Jin X, Mezincescu L and Zachos C 2009 Phys. Lett. B 675 387
[16] Lin H 2008 J. High Energy Phys. 0807 136
[17] Chakrabortty S, Kumar A and Jain S 2008 J. High Energy Phys. 0809 091
[18] Chen M R, Wu K and Zhao W Z 2011 J. High Energy Phys. 1109 090
Chen M R, Wu K and Zhao W Z 2011 arXiv:1107.3295
[hep-th]
[19] Ammar F, Makhlouf A and Silvestrov S 2010 J. Phys. A: Math. Theor. 43 265204
[20] Ding L, Jia X Y, Wu K, Yan Z W and Zhao W Z 2014 arXiv:1404.0464 [hep-th]
[21] Chen M R, Wang S K, Wu K and Zhao W Z 2012 J. High Energy Phys. 1212 030
Chen M R, Wang S K, Wu K and Zhao W Z 2012 arXiv:1201.0417
[nlin.SI]
[22] Chen M R, Wang S K, Wang X L, Wu K and Zhao W Z 2015 Nucl. Phys. B 891 655
Chen M R, Wang S K, Wang X L, Wu K and Zhao W Z 2014 arXiv:1309.4627
[nlin.SI]
[23] Zhang C H, Ding L, Yan Z W, Wu K and Zhao W Z 2014 arXiv:1409.3344 [hep-th]
[24] Pope C, Romans L and Shen X 1990 Phys. Lett. B 236 173
[25] Antoniadis I, Ditsas P, Floratos E and Iliopoulos J 1988 Nucl. Phys. B 300 549
[26] Zhao W Z 1999 J. Math. Phys. 40 4325
[27] Zhao W Z 1999 Phys. Lett. B 459 134
[28] Lavagno A, Scarfone A M and Swamy P N 2006 Eur. Phys. J. B 50 351 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|