Chin. Phys. Lett.  2015, Vol. 32 Issue (4): 040202    DOI: 10.1088/0256-307X/32/4/040202
GENERAL |
Realization of the Infinite-Dimensional 3-Algebras in the Calogero–Moser Model
YANG Yan-Xin1,2, YAO Shao-Kui2, ZHANG Chun-Hong2, ZHAO Wei-Zhong2**
1College of Arts and Sciences, Shanxi Agricultural University, Taigu 030801
2School of Mathematical Sciences, Capital Normal University, Beijing 100048
Cite this article:   
YANG Yan-Xin, YAO Shao-Kui, ZHANG Chun-Hong et al  2015 Chin. Phys. Lett. 32 040202
Download: PDF(447KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate realization of the infinite-dimensional 3-algebras in the classical Calogero–Moser model. In terms of the Lax matrix of the Calogero–Moser model and the Nambu 3-brackets in which the variables are the coordinates qi, and canonically conjugate momenta pi and the coupling parameter β are an extra auxiliary phase-space parameter, we present the realization of the Virasoro–Witt, w and SDiff(T2) 3-algebras, respectively.

Received: 31 December 2014      Published: 30 April 2015
PACS:  02.30.Ik (Integrable systems)  
  02.20.Tw (Infinite-dimensional Lie groups)  
  11.25.Hf (Conformal field theory, algebraic structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/4/040202       OR      https://cpl.iphy.ac.cn/Y2015/V32/I4/040202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Yan-Xin
YAO Shao-Kui
ZHANG Chun-Hong
ZHAO Wei-Zhong

[1] Calogero F 1971 J. Math. Phys. 12 419
[2] Moser J 1975 Adv. Math. 16 197
[3] Sutherland B 1972 Phys. Rev. A 5 1372
[4] Olshanetsky M A and Perelomov A M 1981 Phys. Rep. 71 313
[5] D'Hoker E and Phong D H 1998 Nucl. Phys. B 530 537
[6] Bordner A J, Corrigan E and Sasaki R 1998 Prog. Theor. Phys. 100 1107
[7] Khastgir S P and Sasaki R 2001 Phys. Lett. A 279 189
[8] Aniceto I, Avan J and Jevicki A 2010 J. Phys. A: Math. Theor. 43 185201
[9] Avan J and Billey E 1995 Phys. Lett. A 198 183
[10] Hikami K and Wadati M 1994 Phys. Rev. Lett. 73 1191
[11] Nambu Y 1973 Phys. Rev. D 7 2405
[12] Takhtajan L 1994 Commun. Math. Phys. 160 295
[13] Ogawa T and Sagae T 2000 Int. J. Theor. Phys. 39 2875
[14] Curtright T, Fairlie D and Zachos C 2008 Phys. Lett. B 666 386
[15] Curtright T, Fairlie D, Jin X, Mezincescu L and Zachos C 2009 Phys. Lett. B 675 387
[16] Lin H 2008 J. High Energy Phys. 0807 136
[17] Chakrabortty S, Kumar A and Jain S 2008 J. High Energy Phys. 0809 091
[18] Chen M R, Wu K and Zhao W Z 2011 J. High Energy Phys. 1109 090
       Chen M R, Wu K and Zhao W Z 2011 arXiv:1107.3295
       [hep-th]
[19] Ammar F, Makhlouf A and Silvestrov S 2010 J. Phys. A: Math. Theor. 43 265204
[20] Ding L, Jia X Y, Wu K, Yan Z W and Zhao W Z 2014 arXiv:1404.0464 [hep-th]
[21] Chen M R, Wang S K, Wu K and Zhao W Z 2012 J. High Energy Phys. 1212 030
       Chen M R, Wang S K, Wu K and Zhao W Z 2012 arXiv:1201.0417
       [nlin.SI]
[22] Chen M R, Wang S K, Wang X L, Wu K and Zhao W Z 2015 Nucl. Phys. B 891 655
       Chen M R, Wang S K, Wang X L, Wu K and Zhao W Z 2014 arXiv:1309.4627
       [nlin.SI]
[23] Zhang C H, Ding L, Yan Z W, Wu K and Zhao W Z 2014 arXiv:1409.3344 [hep-th]
[24] Pope C, Romans L and Shen X 1990 Phys. Lett. B 236 173
[25] Antoniadis I, Ditsas P, Floratos E and Iliopoulos J 1988 Nucl. Phys. B 300 549
[26] Zhao W Z 1999 J. Math. Phys. 40 4325
[27] Zhao W Z 1999 Phys. Lett. B 459 134
[28] Lavagno A, Scarfone A M and Swamy P N 2006 Eur. Phys. J. B 50 351

Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 040202
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 040202
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 040202
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 040202
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 040202
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 040202
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 040202
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 040202
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 040202
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 040202
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 040202
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 040202
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 040202
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 040202
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 040202
Viewed
Full text


Abstract