Chin. Phys. Lett.  2015, Vol. 32 Issue (4): 040302    DOI: 10.1088/0256-307X/32/4/040302
GENERAL |
Dynamics of Open Systems with Affine Maps
ZHANG Da-Jian, LIU Chong-Long, TONG Dian-Min**
Department of Physics, Shandong University, Jinan 250100
Cite this article:   
ZHANG Da-Jian, LIU Chong-Long, TONG Dian-Min 2015 Chin. Phys. Lett. 32 040302
Download: PDF(439KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Many quantum systems of interest are initially correlated with their environments and the reduced dynamics of open systems are an interesting while challenging topic. Affine maps, as an extension of completely positive maps, are a useful tool to describe the reduced dynamics of open systems with initial correlations. However, it is unclear what kind of initial state shares an affine map. In this study, we give a sufficient condition of initial states, in which the reduced dynamics can always be described by an affine map. Our result shows that if the initial states of the combined system constitute a convex set, and if the correspondence between the initial states of the open system and those of the combined system, defined by taking the partial trace, is a bijection, then the reduced dynamics of the open system can be described by an affine map.

Received: 27 January 2015      Published: 30 April 2015
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.65.Ca (Formalism)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/4/040302       OR      https://cpl.iphy.ac.cn/Y2015/V32/I4/040302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Da-Jian
LIU Chong-Long
TONG Dian-Min

[1] Lindblad G 1976 Commun. Math. Phys. 48 119
[2] Kraus K 1983 States, Effects and Operations: Fundamental Physics (New York: Spring-Verlag)
[3] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University)
[4] Pechukas P 1994 Phys. Rev. Lett. 73 1060
[5] Štelmachovi? P and Bu?ek V 2001 Phys. Rev. A 64 062106
     Štelmachovi? P and Bu?ek V 2003 Phys. Rev. A 67 029902
[6] Song H S et al 2002 Chin. Phys. Lett. 19 53
[7] Hayashi H, Kimura G and Ota Y 2003 Phys. Rev. A 67 062109
[8] Fonseca Romero K M, Talkner P and Hänggi P 2004 Phys. Rev. A 69 052109
[9] Jordan T F, Shaji A and Sudarshan E C G 2004 Phys. Rev. A 70 052110
[10] Tong D M et al 2004 Phys. Rev. A 69 054102
[11] Jordan T F 2005 Phys. Rev. A 71 034101
[12] Zhang Y, Cao W C and Long G L 2005 Chin. Phys. Lett. 22 2143
[13] Jordan T F, Shaji A and Sudarshan E C G 2006 Phys. Rev. A 73 012106
[14] Carteret H A, Terno D R and ?yczkowski K 2008 Phys. Rev. A 77 042113
[15] Rodriguez-Rosario C A et al 2008 J. Phys. A 41 205301
[16] Sheng Y B, Deng F G and Zhou H Y 2008 Chin. Phys. Lett. 25 3558
[17] Shabani A and Lidar D A 2009 Phys. Rev. Lett. 102 100402
[18] Shabani A and Lidar D A 2009 Phys. Rev. A 80 012309
[19] Rodríguez-Rosario C A, Modi K and Aspuru-Guzik A 2010 Phys. Rev. A 81 012313
[20] Modi K and Sudarshan E C G 2010 Phys. Rev. A 81 052119
[21] Masillo F, Scolarici G and Solombrino L 2011 J. Math. Phys. 52 012101
[22] Xu G F and Tong D M 2011 Chin. Phys. Lett. 28 060305
[23] Modi K, Rodríguez-Rosario C A and Aspuru-Guzik A 2012 Phys. Rev. A 86 064102
[24] Ye B L et al 2013 Chin. Phys. Lett. 30 020302
[25] Brodutch A et al 2013 Phys. Rev. A 87 042301
[26] Dominy J M, Shabani A and Lidar D A arXiv:1312.0908v1
[27] Liu L and Tong D M 2014 Phys. Rev. A 90 012305
[28] Buscemi F 2014 Phys. Rev. Lett. 113 140502
[29] Sudarshan E C G, Mathews P M and Rau J 1961 Phys. Rev. 121 920
[30] Jordan T F and Sudarshan E C G 1961 J. Math. Phys. 2 772
[31] Jordan T F, Pinsky M A and Sudarshan E C G 1962 J. Math. Phys. 3 848
[32] Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University )
[33] Fujiwara A and Algoet P 1999 Phys. Rev. A 59 3290
[34] Ruskai M B, Szarek S and Werner E 2002 Linear Algebra and its Applications 347 159

Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 040302
[2] Chen Wang, Lu-Qin Wang, and Jie Ren. Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States[J]. Chin. Phys. Lett., 2021, 38(1): 040302
[3] Guobin Chen, Yang Hui, Junci Sun, Wenhao He, and Guanxiang Du. Rapid Measurement and Control of Nitrogen-Vacancy Center-Axial Orientation in Diamond Particles[J]. Chin. Phys. Lett., 2020, 37(11): 040302
[4] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 040302
[5] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer *[J]. Chin. Phys. Lett., 0, (): 040302
[6] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer[J]. Chin. Phys. Lett., 2020, 37(6): 040302
[7] Zi Cai, Yizhen Huang, W. Vincent Liu. Imaginary Time Crystal of Thermal Quantum Matter[J]. Chin. Phys. Lett., 2020, 37(5): 040302
[8] Bing-Bing Chai, Jin-Liang Guo. Distillability of Sudden Death in Qutrit-Qutrit Systems under Global Mixed Noise[J]. Chin. Phys. Lett., 2019, 36(5): 040302
[9] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 040302
[10] Jun Wen, Guan-Qiang Li. Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process[J]. Chin. Phys. Lett., 2018, 35(6): 040302
[11] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 040302
[12] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 040302
[13] H. A. Zad. Total Pairwise Quantum Correlation and Entanglement in a Mixed-Three-Spin Ising-$XY$ Model with Added Dzyaloshinskii–Moriya Interaction under Decoherence[J]. Chin. Phys. Lett., 2016, 33(09): 040302
[14] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 040302
[15] Wei-Ting Zhu, Qing-Bao Ren, Li-Wei Duan, Qing-Hu Chen. Entanglement Dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong Coupling Regime: Analytical Results[J]. Chin. Phys. Lett., 2016, 33(05): 040302
Viewed
Full text


Abstract