Chin. Phys. Lett.  2015, Vol. 32 Issue (03): 034202    DOI: 10.1088/0256-307X/32/3/034202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Liquid Concentration Sensing Properties of Microfibers with a Nanoscale-Structured Film
ZHOU Guo-Rui, LV Hai-Bing, YUAN Xiao-Dong, ZHOU Hai, LIU Hao, LI Ke-Xin, CHENG Xiao-Feng, MIAO Xin-Xiang**
Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900
Cite this article:   
ZHOU Guo-Rui, LV Hai-Bing, YUAN Xiao-Dong et al  2015 Chin. Phys. Lett. 32 034202
Download: PDF(945KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A type of compact solution concentration sensor based on a microfiber with a nanoscale-structured film is proposed and demonstrated experimentally. Additional loss at different solution concentrations is calculated by means of the three-dimensional finite-difference time-domain (3D-FDTD) method. The microfiber is fabricated by using the flame-heated scanning technique. Nanoscale-structured film is coated on the microfiber surface, which is assembled as a sensing unit. The sensitivity of this kind of sensor increases with the decreasing diameters of the microfiber. When the diameter of the microfiber is 2 μm, a minimum concentration sensitivity of 1% (under 450 s measuring time) is demonstrated in the experiment. Higher sensitivity can be attained when the solution concentration is higher. The sensing properties of this microfiber with the nanoscale-structured film may provide opportunities for new applications in optical sensing devices.
Published: 26 February 2015
PACS:  42.79.-e (Optical elements, devices, and systems)  
  51.70.+f (Optical and dielectric properties)  
  07.60.Vg (Fiber-optic instruments)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/3/034202       OR      https://cpl.iphy.ac.cn/Y2015/V32/I03/034202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Guo-Rui
LV Hai-Bing
YUAN Xiao-Dong
ZHOU Hai
LIU Hao
LI Ke-Xin
CHENG Xiao-Feng
MIAO Xin-Xiang
[1] Rosen R 2007 Curr. Opin. Biotechnol. 18 246
[2] Shobha Jeykumari D R and Sriman Narayanan S 2007 Nanotechnology 18 125501
[3] Tong L M, Lou J and Mazur E 2004 Opt. Express 12 1025
[4] Meng C, Xiao Y, Wang P, Zhang L, Liu Y X and Tong L M 2011 Adv. Mater. 23 3770
[5] Li Y H and Tong L M 2008 Opt. Lett. 33 303
[6] Yue X J, Hong T S, Xu Xing and Li Z 2011 Chin. Phys. Lett. 28 090701
[7] Warken F, Vetsch E, Meschede D, Sokolowski M and Rauschenbeutel A 2007 Opt. Express 15 11952
[8] Fang X, Liao C R and Wang D N 2010 Opt. Lett. 35 1007
[9] Xu L, Wang R, Xiao Q, Zhang D and Liu Y 2011 Chin. Phys. Lett. 28 070702
[10] Wang P, Zhang L, Xia Y N, Tong L M, Xu X and Ying Y B 2012 Nano Lett. 12 3145
[11] Xu L, Wang R, Liu Y and Dong L 2011 Chin. Phys. Lett. 28 040701
[12] Zhang L, Wang P, Xiao Y, Yu H K and Tong L M 2011 Lab Chip 11 3720
[13] Liu Y X, Meng C, Zhang A P, Xiao Y, Yu H K and Tong L M 2011 Opt. Lett. 36 3115
[14] Xiao Y, Meng C, Wang P, Ye Y, Yu H K, Wang S S, Gu F X, Dai L and Tong L M 2011 Nano Lett. 11 1122
[15] Siviloglou G A, Suntsov S, Ganainy R E, Iwanow R and Stegeman G I 2006 Opt. Express 14 9377
[16] Zhang Y, Zhang X L, Chen G J, Xu E M and Huang D X 2010 Chin. Phys. Lett. 27 074207
[17] Y Lizé M ?gi E, Ta'eed V, Bolger J, Steinvurzel P and Eggleton B 2004 Opt. Express 12 3209
[18] Jasim A A, Zulkufli A Z, Muhammad M Z, Ahmad H and Harun S W 2012 Chin. Phys. Lett. 29 084204
[19] Tong L, Hu L, Zhang J, Qiu J, Yang Q, Lou J, Shen Y, He J and Ye Z 2006 Opt. Express 14 82
[20] Tong L, Gattass R R, Ashcom J B, He S, Lou J, Shen M, Maxwell I and Mazur E 2003 Nature 426 816
[21] Dimmick T E, Kakarantzas G, Birks T A and Russell P S J 1999 Appl. Opt. 38 6845
Related articles from Frontiers Journals
[1] Lei Geng, Hao Liang, and Liang-You Peng. Laser-Induced Electron Fresnel Diffraction in Tunneling and Over-Barrier Ionization[J]. Chin. Phys. Lett., 2022, 39(4): 034202
[2] Xiaopeng Zhou, Xinning Zeng, Xuyang Ning, Abdusalam Abdukerim, Wei Chen, Xun Chen, Yunhua Chen, Chen Cheng, Xiangyi Cui, Yingjie Fan, Deqing Fang, Changbo Fu, Mengting Fu, Lisheng Geng, Karl Giboni, Linhui Gu, Xuyuan Guo, Ke Han, Changda He, Di Huang, Yan Huang, Yanlin Huang, Zhou Huang, Xiangdong Ji, Yonglin Ju, Shuaijie Li, Huaxuan Liu, Jianglai Liu, Xiaoying Lu, Wenbo Ma, Yugang Ma, Yajun Mao, Yue Meng, Kaixiang Ni, Jinhua Ning, Xiangxiang Ren, Changsong Shang, Guofang Shen, Lin Si, Andi Tan, Anqing Wang, Hongwei Wang, Meng Wang, Qiuhong Wang, Siguang Wang, Wei Wang, Xiuli Wang, Zhou Wang, Mengmeng Wu, Shiyong Wu, Weihao Wu, Jingkai Xia, Mengjiao Xiao, Pengwei Xie, Binbin Yan, Jijun Yang, Yong Yang, Chunxu Yu, Jumin Yuan, Ying Yuan, Dan Zhang, Tao Zhang, Li Zhao, Qibin Zheng, Jifang Zhou, and Ning Zhou (PandaX-II Collaboration). Erratum: A Search for Solar Axions and Anomalous Neutrino Magnetic Moment with the Complete PandaX-II Data [CHIN. PHYS. LETT. 38 (2021) 011301][J]. Chin. Phys. Lett., 2021, 38(10): 034202
[3] Xin Ni, Kunpeng Jia, Xiaohan Wang, Huaying Liu, Jian Guo, Shu-Wei Huang, Baicheng Yao, Nicolò Sernicola, Zhenlin Wang, Xinjie Lv, Gang Zhao, Zhenda Xie, and Shi-Ning Zhu. Broadband Sheet Parametric Oscillator for $\chi^{(2)}$ Optical Frequency Comb Generation via Cavity Phase Matching[J]. Chin. Phys. Lett., 2021, 38(6): 034202
[4] Jun-xia Zhou, Ren-hong Gao, Jintian Lin, Min Wang, Wei Chu, Wen-bo Li, Di-feng Yin, Li Deng, Zhi-wei Fang, Jian-hao Zhang, Rong-bo Wuand Ya Cheng. Electro-Optically Switchable Optical True Delay Lines of Meter-Scale Lengths Fabricated on Lithium Niobate on Insulator Using Photolithography Assisted Chemo-Mechanical Etching[J]. Chin. Phys. Lett., 2020, 37(8): 034202
[5] Shining Zhu. Meter-Level Optical Delay Line on a Low-Loss Lithium Niobate Nanophotonics Chip[J]. Chin. Phys. Lett., 2020, 37(8): 034202
[6] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 034202
[7] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 034202
[8] Dan Sun, Yao Lu, Jin-Bo Hao, Kai-Ge Wang. High Optical Magnification Three-Dimensional Integral Imaging of Biological Micro-organism[J]. Chin. Phys. Lett., 2017, 34(7): 034202
[9] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 034202
[10] LIANG Hui-Min, WANG Jing-Quan, WANG Xue, WANG Gui-Mei. Surface Plasmon Interference Lithography Assisted by a Fabry–Perot Cavity Composed of Subwavelength Metal Grating and Thin Metal Film[J]. Chin. Phys. Lett., 2015, 32(10): 034202
[11] XU Cheng, LIN Di, NIU Ji-Nan, QIANG Ying-Huai, LI Da-Wei, TAO Chun-Xian. Preparation of Ta-Doped TiO2 Using Ta2O5 as the Doping Source[J]. Chin. Phys. Lett., 2015, 32(08): 034202
[12] XIAO Yu, LI Can, XU Shan-Hui, FENG Zhou-Ming, YANG Chang-Sheng, ZHAO Qi-Lai, YANG Zhong-Min. Simultaneously Suppressing Low-Frequency and Relaxation Oscillation Intensity Noise in a DBR Single-Frequency Phosphate Fiber Laser[J]. Chin. Phys. Lett., 2015, 32(06): 034202
[13] ZENG Yong-Ping, LIU Wen-Jie, WENG Guo-En, ZHAO Wan-Ru, ZUO Hai-Jie, YU Jian, ZHANG Jiang-Yong, YING Lei-Ying, ZHANG Bao-Ping. Effect of In Diffusion on the Property of Blue Light-Emitting Diodes[J]. Chin. Phys. Lett., 2015, 32(06): 034202
[14] PENG Yu, GAN Xue-Tao, JU Pei, WANG Ya-Dong, ZHAO Jian-Lin. Measuring Topological Charges of Optical Vortices with Multi-Singularity Using a Cylindrical Lens[J]. Chin. Phys. Lett., 2015, 32(02): 034202
[15] SHANG Ce, CHEN Zhao, WANG Lu-Lu, ZHAO Yu-Fang, DUAN Gao-Yan, YU Li. Characteristics of the Coupled-Resonator Structure Based on a Stub Resonator and a Nanodisk Resonator[J]. Chin. Phys. Lett., 2014, 31(11): 034202
Viewed
Full text


Abstract