Chin. Phys. Lett.  2015, Vol. 32 Issue (03): 034201    DOI: 10.1088/0256-307X/32/3/034201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Intensity Distributions of a Supercontinuum Laser in an Apertured Dispersion Lens
YUAN Na, ZHANG Wei, WANG Juan, CHEN Wei, PENG Run-Wu**
Department of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114
Cite this article:   
YUAN Na, ZHANG Wei, WANG Juan et al  2015 Chin. Phys. Lett. 32 034201
Download: PDF(439KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present intensity distributions of a supercontinuum laser passing through an apertured dispersion lens and find focal shift effects generated. The results show that, apart from the conventional negative focal shift, a positive focal shift also appears in the supercontinuum laser. The maximum intensity of the supercontinuum laser shifts toward the lens when the truncated parameter is small. However, it exceeds the focus of the central wavelength and a positive focal shift appears in the supercontinuum laser with large truncated parameter. Both of the maximum intensities shift away from the focus when the bandwidth of the supercontinuum laser increases, while the shift direction is opposite. No focal shift appears when the bandwidth and the truncated parameter satisfy some conditions.
Published: 26 February 2015
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Fx (Diffraction and scattering)  
  42.79.Ag (Apertures, collimators)  
  42.79.Bh (Lenses, prisms and mirrors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/3/034201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I03/034201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUAN Na
ZHANG Wei
WANG Juan
CHEN Wei
PENG Run-Wu
[1] Hsiung P et al 2004 Opt. Express 12 5287
[2] Jones D J et al 2000 Science 288 635
[3] Morioka T et al 1993 Electron. Lett. 29 862
[4] Alfano R R and Shapiro S L 1970 Phys. Rev. Lett. 24 592
[5] Alfano R R and Shapiro S L 1970 Phys. Rev. Lett. 24 1217
[6] Ranka J K et al 2000 Opt. Lett. 25 25
[7] Ament C et al 2011 Phys. Rev. Lett. 107 243901
[8] Han Y et al 2012 Chin. Phys. Lett. 29 054208
[9] Li Y and Wolf E 1981 Opt. Commun. 39 211
[10] Li Y and Wolf E 1982 Opt. Commun. 42 151
[11] Pamela G and Dennis H 1999 Opt. Express 4 411
[12] Martínez-Corral M, Caballero M T, Mu?oz-Escrivá L and Andrés P 2001 Opt. Lett. 26 1501
[13] Chen J N 2011 Chin. Phys. Lett. 28 124202
[14] Mei Z R 2011 Opt. Commun. 284 5248
[15] Guo L N et al 2014 Chin. Phys. Lett. 31 074101
[16] He X M and Lü B D 2011 Chin. Phys. B 20 094210
[17] Fang G J and Pu J X 2012 Chin. Phys. B 21 084203
[18] Malitson I H 1965 J. Opt. Soc. Am. 55 1205
Related articles from Frontiers Journals
[1] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 034201
[2] Zhong-Hua Qian, Zi-Han Ding, Ming-Zhong Ai, Yong-Xiang Zheng, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Bayesian Optimization for Wavefront Sensing and Error Correction[J]. Chin. Phys. Lett., 2021, 38(6): 034201
[3] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 034201
[4] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 034201
[5] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 034201
[6] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 034201
[7] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 034201
[8] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 034201
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 034201
[10] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 034201
[11] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 034201
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 034201
[13] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 034201
[14] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 034201
[15] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 034201
Viewed
Full text


Abstract