Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 114201    DOI: 10.1088/0256-307X/30/11/114201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Tunable and Linewidth-Reduced Laser Diode Stack for Rubidium Laser Pumping
LI Zhi-Yong1,2, TAN Rong-Qing1**, XU Cheng1, LI Lin1
Department of High Power Gas Laser, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
LI Zhi-Yong, TAN Rong-Qing, XU Cheng et al  2013 Chin. Phys. Lett. 30 114201
Download: PDF(487KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Linewidth of a laser diode stack with 5 bar is reduced to 0.2 nm from 1.8 nm through the use of an external volume Bragg grating (VBG) cavity. The temperature of the VBG is controlled efficiently to make the central wavelength tunable. The linewidth changes little in the wavelength-tuning experiments. Since the tunable range covers the rubidium D2 absorption line, the stack can be used to pump the rubidium laser efficiently.
Received: 28 April 2013      Published: 30 November 2013
PACS:  42.55.Lt (Gas lasers including excimer and metal-vapor lasers)  
  42.55.Xi (Diode-pumped lasers)  
  42.40.Eq (Holographic optical elements; holographic gratings)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/114201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/114201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Zhi-Yong
TAN Rong-Qing
XU Cheng
LI Lin
[1] Zhdanov B V and Knize R J 2013 Opt. Eng. 52 021010
[2] Zhdanov B V et al 2008 Opt. Express 16 748
[3] Xu C et al 2013 Chin. J. Lasers 40 0102009 (in Chinese)
[4] Volodin B L et al 2007 Proc. SPIE 6456 645614
[5] Li Z Y et al 2013 High Power Laser Part. Beams 25 310 (in Chinese)
[6] Zweiback J et al 2010 Proc. SPIE 7581 75810G
[7] Zheng Y et al 2007 Jpn. J. Appl. Phys. 46 7768
[8] Gourevitch A et al 2008 Opt. Lett. 33 702
[9] Li Z Y et al 2013 Quantum Electron. 43 147
[10] Yang Z N et al 2011 Chin. Phys. Lett. 28 104202
[11] Li Z Y et al 2013 High Power Laser Part. Beams 25 875 (in Chinese)
[12] Li Z Y et al 2012 Chin. J. Lasers 39 1102006 (in Chinese)
[13] Cheng C et al 2008 Chin. J. Lasers 35 27 (in Chinese)
[14] Waritanant T and Chung T Y 2011 IEEE J. Quantum Electron. 47 390
[15] Venus G B et al 2005 Proc. SPIE 5711 166
[16] Li Z Y et al 2013 Chin. Phys. Lett. 30 034202
Related articles from Frontiers Journals
[1] Fang-Jin Ning, Zhi-Yong Li, Rong-Qing Tan, Lie-Mao Hu, Song-Yang Liu. Diode Pumped Rubidium Laser Based on Etalon Effects of Alkali Cell Windows[J]. Chin. Phys. Lett., 2020, 37(3): 114201
[2] M. E. Aeinehvand, S. Behrouzinia, M. K. Salem, M. Elahei, K. Khorasani. Pressure Dependence of the Small-Signal Gain and Saturation Intensity of a Copper Bromide Laser[J]. Chin. Phys. Lett., 2017, 34(8): 114201
[3] Wei-Xin Liu, Ming-Zhe Sun. Anomalous Variation of Beat Frequency in a Dual Frequency He–Ne Laser[J]. Chin. Phys. Lett., 2016, 33(02): 114201
[4] LI Zhi-Yong, TAN Rong-Qing, HUANG Wei, XU Cheng. A Linearly-Polarized Cesium Vapor Laser with Fundamental Mode Output and Low Threshold[J]. Chin. Phys. Lett., 2014, 31(04): 114201
[5] WU Yun, TAN Yi-Dong, ZHANG Shu-Lian, LI Yan. Influence of Feedback Level on Laser Polarization in Polarized Optical Feedback[J]. Chin. Phys. Lett., 2013, 30(8): 114201
[6] LI Zhi-Yong, TAN Rong-Qing, XU Cheng, LI Lin, ZHAO Zhi-Long. A Linearly-Polarized Rubidium Vapor Laser Pumped by a Tunable Laser Diode Array with an External Cavity of a Temperature-Controlled Volume Bragg Grating[J]. Chin. Phys. Lett., 2013, 30(3): 114201
[7] CHEN Wen-Xue, ZHANG Shu-Lian, LONG Xing-Wu. Multi-Wavelength Conversion Based on Single Wavelength Results in Phase Retardation Measurement[J]. Chin. Phys. Lett., 2013, 30(3): 114201
[8] WU Yun, TAN Yi-Dong. Birefringence Optical Feedback with a Folded Cavity in HeNe Laser[J]. Chin. Phys. Lett., 2013, 30(1): 114201
[9] YANG Chen-Guang, XU Yong-Yue, ZUO Du-Luo. Temperature Characteristics of Cathode Sheath in High-Pressure Volume Discharge Derived from Emanating Shock Wave[J]. Chin. Phys. Lett., 2012, 29(12): 114201
[10] ZENG Zhao-Li, ZHANG Shu-Lian, TAN Yi-Dong, CHEN Wen-Xue, LI Yan. Phase Tuning Characteristics of a Double-Longitudinal-Mode He-Ne Laser with Optical Feedback[J]. Chin. Phys. Lett., 2012, 29(9): 114201
[11] LI Guo-Fu,**,YU Hai-Jun,DUO Li-Ping,JIN Yu-Qi,WANG Jian,SANG Feng-Ting,WANG De-Zhen. Pulsed Chemical Oxygen Iodine Lasers Excited by Pulse Gas Discharge with the Assistance of Surface Sliding Discharge Pre-ionization[J]. Chin. Phys. Lett., 2012, 29(5): 114201
[12] MIAO Liang**,ZUO Du-Luo,CHENG Zu-Hai. A Terahertz Wavemeter Based on a Fabry–Perot Interferometer Composed of Two Identical Ge Etalons[J]. Chin. Phys. Lett., 2012, 29(5): 114201
[13] YANG Zi-Ning, WANG Hong-Yan**, LU Qi-Sheng, HUA Wei-Hong, XU Xiao-Jun . An 80-W Laser Diode Array with 0.1 nm Linewidth for Rubidium Vapor Laser Pumping[J]. Chin. Phys. Lett., 2011, 28(10): 114201
[14] ZHUANG Wei, CHEN Jing-Biao** . Feasibility of Extreme Ultraviolet Active Optical Clock[J]. Chin. Phys. Lett., 2011, 28(8): 114201
[15] RAO Zhi-Ming, WANG Xin-Bing**, LU Yan-Zhao, ZUO Du-Luo, WU Tao . Two Schemes for Generating Efficient Terahertz Waves in Nonlinear Optical Crystals with a Mid-Infrared CO2 Laser[J]. Chin. Phys. Lett., 2011, 28(7): 114201
Viewed
Full text


Abstract