Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 113402    DOI: 10.1088/0256-307X/30/11/113402
ATOMIC AND MOLECULAR PHYSICS |
Molecular Dynamics Simulation of Damage to Coiled Carbon Nanotubes under C Ion Irradiation
ZHOU Bin1,2, ZHANG Wei1,3**, GONG Wen-Bin1,2, WANG Song1,2, REN Cui-Lan1,3, WANG Cheng-Bin1,3, ZHU Zhi-Yuan1,3, HUAI Ping1,4
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
2University of Chinese Academy of Sciences, Beijing 100049
3Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800
4Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800
Cite this article:   
ZHOU Bin, ZHANG Wei, GONG Wen-Bin et al  2013 Chin. Phys. Lett. 30 113402
Download: PDF(1071KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The stability of coiled carbon nanotubes under C ion irradiation is investigated by molecular dynamics simulations. The defect statistics shows that small curvature coiled carbon nanotubes have better radiation tolerance than normal straight carbon nanotubes. To understand the effect of the curvature on defect production, the threshold displacement energies for the upper and lower walls, as well as those for the side parts, are calculated. The results show that the lower wall has better radiation tolerance than the upper wall. For the upper wall, a small increase in the curvature of nanotube axis gives rise to an increase in the radiation tolerance and then a decrease with the curvature becomes larger. However, for the lower wall, as the curvature of the nanotube axis increases, the radiation tolerance increases as the bonds compressed slightly in our simulation.
Received: 10 July 2013      Published: 30 November 2013
PACS:  34.20.Cf (Interatomic potentials and forces)  
  61.46.Fg (Nanotubes)  
  61.48.Gh (Structure of graphene)  
  81.07.Nb (Molecular nanostructures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/113402       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/113402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Bin
ZHANG Wei
GONG Wen-Bin
WANG Song
REN Cui-Lan
WANG Cheng-Bin
ZHU Zhi-Yuan
HUAI Ping
[1] Baughman R H et al 2002 Science 297 787
[2] Chico L et al 1996 Phys. Rev. Lett. 76 971
[3] Kong J et al 2002 Appl. Phys. Lett. 80 73
[4] Banhart F 1999 Rep. Prog. Phys. 62 1181
[5] Hulman M et al 2005 J. Appl. Phys. 98 024311
[6] Basiuk V A et al 2002 Nano Lett. 2 789
[7] Raghuveer M S et al 2004 Appl. Phys. Lett. 84 4484
[8] Krasheninnikov A V and Banhart F 2007 Nat. Mater. 6 723
[9] Charlier J C 2002 Acc. Chem. Res. 35 1063
[10] Kotakoski J et al 2005 Phys. Rev. B 71 205408
[11] Krasheninnikov A V et al 2002 Phys. Rev. B 66 245403
[12] Kotakoski J et al 2005 Nucl. Instrum. Methods Phys. Res. Sect. B 228 31
[13] Ihara S et al 1993 Phys. Rev. B 48 5643
[14] Dunlap B I 1992 Phys. Rev. B 46 1933
[15] Zhang X B et al 1994 Europhys. Lett. 27 141
[16] Park S H et al 2010 Appl. Phys. Lett. 96 043115
[17] Lau K T et al 2006 Compos. Part B 37 437
[18] Lu W G 2005 Sci. Technol. Adv. Mater. 6 809
[19] Chen X Q et al 2003 Nano Lett. 3 1299
[20] Milosevic I and Damnjanovic M 2011 Acta Phys. Pol. A 120 221
[21] Plimpton S 1995 J. Comput. Phys. 117 1
[22] Pomoell J A V et al 2004 J. Appl. Phys. 96 2864
[23] Stuart S J et al 2000 J. Chem. Phys. 112 6472
[24] Krasheninnikov A V et al 2001 Phys. Rev. B 63 245405
[25] Pomoell J et al 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 206 18
[26] Nordlund K et al 1996 Phys. Rev. Lett. 77 699
[27] Berendsen H J C et al 1984 J. Chem. Phys. 81 3684
[28] Crespi V H et al 1996 Phys. Rev. B 54 5927
[29] Cui F Z et al 2002 Phys. Lett. A 295 55
[30] Holmstrom E et al 2010 Phys. Rev. B 82 045420
[31] Zhang C et al 2012 Chem. Phys. Lett. 541 92
[32] Zhao S J et al 2012 Nanotechnology 23 285703
[33] Kotakoski J et al 2010 Phys. Rev. B 82 113404
Related articles from Frontiers Journals
[1] Su-Ying Bai, Jing-Xu Bai, Xiao-Xuan Han, Yue-Chun Jiao, Jian-Ming Zhao, and Suo-Tang Jia. Observation of Cesium ($nD_{5/2}$+$6S_{1/2}$) Ultralong-Range Rydberg-Ground Molecules[J]. Chin. Phys. Lett., 2020, 37(12): 113402
[2] Peng Peng, Liang-Hui Huang, Dong-Hao Li, Zeng-Ming Meng, Peng-Jun Wang, Jing Zhang. Experimental Observation of Spin-Exchange in Ultracold Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(3): 113402
[3] Liang-Hui Huang, Peng-Jun Wang, Zeng-Ming Meng, Peng Peng, Liang-Chao Chen, Dong-Hao Li, Jing Zhang. Magnetic-Field Dependence of Raman Coupling Strength in Ultracold $^{40}$K Atomic Fermi Gas[J]. Chin. Phys. Lett., 2016, 33(03): 113402
[4] SONG Hua-Jie, LI Hua, HUANG Feng-Lei, ZHANG Shuo-Dao, HONG Tao. High-Fidelity Hugoniots of α Phase RDX Solid from High-Quality Force Field with Thermal, Zero-Point Vibration, and Anharmonic Effects[J]. Chin. Phys. Lett., 2015, 32(08): 113402
[5] WU Tian-Yu, PENG Meng-Meng, LUO Xiao-Feng, LAI Wen-Sheng. Influence of Temperature and Stress on Near-Surface Cascades in Alpha-Zirconium Revealed by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2013, 30(9): 113402
[6] ZHANG Ji-Cai, ZHU Zun-Lue, SUN Jin-Feng, LIU Yu-Fang. S-Wave Scattering Properties for Na–K Cold Collisions[J]. Chin. Phys. Lett., 2013, 30(2): 113402
[7] ZHANG Ji-Cai**, ZHU Zun-Lue, LIU Yu-Fang, SUN Jin-Feng, . Elastic Scattering Properties of Ultracold Strontium Atoms[J]. Chin. Phys. Lett., 2011, 28(12): 113402
[8] YUAN Xiao-Jian, **, CHEN Nan-Xian, SHEN Jiang . Lattice-Inversion Embedded-Atom-Method Interatomic Potentials for Group-VA Transition Metals[J]. Chin. Phys. Lett., 2011, 28(12): 113402
[9] Jamieson M. J.**, Ouerdane H., . Parameters for Cold Collisions of Lithium and Caesium Atoms[J]. Chin. Phys. Lett., 2011, 28(6): 113402
[10] HU Qiu-Bo, ZHANG Yong-Sheng, SUN Jin-Feng, YU Ke . Elastic Scattering between Ultracold 23Na and 85Rb Atoms in the Triplet State[J]. Chin. Phys. Lett., 2011, 28(4): 113402
[11] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 113402
[12] HU Qiu-Bo, ZHANG Yong-Sheng, SUN Jin-Feng. Elastic Scattering of Ultracold 23Na and 39K Atoms in the Singlet State[J]. Chin. Phys. Lett., 2010, 27(2): 113402
[13] CHEN Yi, SHEN Jiang, CHEN Nan-Xian. Structural and Thermodynamic Properties of M3W3N (M=Fe, Co, Ni)[J]. Chin. Phys. Lett., 2009, 26(4): 113402
[14] LIU Xiao-Ming, LIU Zhan-Li, YOU Xiao-Chuan, NIE Jun-Feng, ZHUANG Zhuo. Theoretical Strength of Face-Centred-Cubic Single Crystal Copper Based on a Continuum Model[J]. Chin. Phys. Lett., 2009, 26(2): 113402
[15] DU Bing-Ge, SUN Jin-Feng, ZHANG Ji-Cai, ZHANG Ying, LI Wei, ZHU Zun-Lue. Variable Phase Method Used to Calculate Ultracold Scattering Properties of 7Li33Cs[J]. Chin. Phys. Lett., 2008, 25(10): 113402
Viewed
Full text


Abstract