Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 116201    DOI: 10.1088/0256-307X/30/11/116201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Tensile Strength of Zr-Ti Binary Alloy
ZHOU Yun-Kai, JING Ran, MA Ming-Zhen, LIU Ri-Ping**
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004
Cite this article:   
ZHOU Yun-Kai, JING Ran, MA Ming-Zhen et al  2013 Chin. Phys. Lett. 30 116201
Download: PDF(3573KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Zr-Ti binary alloys are prepared using a nonconsumable tungsten electrode under Ti-gettered inert atmosphere (argon). Microstructures are observed mainly as α phase using x-ray diffraction. A tensile test is performed to investigate the tensile strength of a series of Zr-Ti binary alloys at room temperature. The findings indicate that increasing Ti concentration results in an initial increase (<50at% of Ti) and then a decrease in tensile strength. The Zr55Ti45 (at%) component exhibits the maximum tensile strength of 1216.68 MPa, which is much higher than that of pure Ti (increased by approximately 200%) or pure Zr (increased by approximately 100%). The potential mechanisms for the remarkable tensile strength are solid solution strengthening and grain refinement.
Received: 02 September 2013      Published: 30 November 2013
PACS:  62.20.M- (Structural failure of materials)  
  81.30.Bx (Phase diagrams of metals, alloys, and oxides)  
  64.70.kd (Metals and alloys)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/116201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/116201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Yun-Kai
JING Ran
MA Ming-Zhen
LIU Ri-Ping
[1] Kim Y S and Grybenas A 2009 Mater. Sci. Eng. A 520 147
[2] Trojanová Z, Luká? P, Král F, Král R, Lavrentev F F and Nikiforenko V N 1991 Mater. Sci. Eng. A 137 151
[3] Baykov V I, Perez R J, Korzhavyi P A, Sundman B and Johansson B 2006 Scr. Mater. 55 485
[4] Roy A K and Kaiparambil A V 2006 Mater. Sci. Eng. A 427 320
[5] Gloaguen D, Franois M, Guillen R and Royer 2002 Acta Mater. 50 871
[6] Tewari R, Srivastava D, Dey G K, Chakravarty J K and Banerjee S 2008 J. Nucl. Mater. 383 153
[7] Suyalatu, Nomura N, Oya Y, Tanaka Y, Kondo R, Doi H, Tsutsumi Y and Hanawa T 2010 Acta Biomater. 6 1033
[8] Hsu H C, Wu S C, Sung Y C and Ho W F 2009 J. Alloys Compd. 488 279
[9] Dey G K and Banerjee S 1985 Mater. Sci. Eng. 73 187
[10] Lee M H, Kim J H, Choi B K and Jeong Y H 2007 J. Alloys Compd. 428 99
[11] Dobromyslov A V and Kazantseva N V 1997 Scr. Mater. 37 615
[12] Liang S X, Yin L X, Ma M Z, Jing R, Yu P F and Liu R P 2013 Mater. Sci. Eng. A 561 13
[13] Sun B R, Zhan Z J, Liang B, Zhang R J and Wang W K 2012 Chin. Phys. B 21 056101
[14] Auffredic J P, Etchessahar E and Debuigne J 1982 J. Less-Common Met. 84 49
[15] Eylon D, Vassel A, Combres Y, Boyer R R, Bania P J and Schutz R W 1994 JOM 46 14
[16] Ivasishin O M, Markovsky P E, Matviychuk Yu V and Semiatin S L 2003 Metall. Mater. Trans. A 34 147
[17] Okazaki Y, Rao S, Ito Y and Tateishi T 1998 Biomaterials 19 1197
[18] Schutz R W and Watkins H B 1998 Mater. Sci. Eng. A 243 305
[19] Gorynin I V 1999 Mater. Sci. Eng. A 263 112
[20] Cheng W W, Chern Lin J H and Ju C P 2003 Mater. Lett. 57 2591
[21] Banerjee S and Krishnan R 1973 Metall. Trans. 4 1811
[22] Hatt B A and Williams G I 1959 Acta Metall. 7 682
[23] Leyens C and Peters M 2003 Titanium and Titanium Alloys (New York: Weinheim Wiley-VCH) p 3
[24] Liang S X, Ma M Z, Jing R, Zhou Y K, Jing Q and Liu R P 2012 Mater. Sci. Eng. A 539 42
[25] Jing R, Liang S X, Liu C Y, Ma M Z, Zhang X Y and Liu R P 2012 Mater. Sci. Eng. A 552 295
[26] Kobayash E, Matsumoto S, Doi H, Yoneyama T and Hamanaka H 1995 J. Biomed. Mater. Res. 29 943
Related articles from Frontiers Journals
[1] Yun-Kai Zhou, Xing Zhang, Shu-Guang Liu, Ming-Zhen Ma, Ri-Ping Liu. High Performance ZrNbAl Alloy with Low Thermal Expansion Coefficient[J]. Chin. Phys. Lett., 2018, 35(8): 116201
[2] ZHANG Cang-Hai, YANG Yi, WANG Yu-Feng, ZHOU Chang-Jian, SHU Yi, TIAN He, REN Tian-Ling. A Novel Fabrication Method for Flexible SOI Substrate Based on Trench Refilling with Polydimethylsiloxane[J]. Chin. Phys. Lett., 2013, 30(8): 116201
[3] YUE Yong-Hai, WANG Li-Hua, ZHANG Ze, HAN Xiao-Dong. Cross-over of the Plasticity Mechanism in Nanocrystalline Cu[J]. Chin. Phys. Lett., 2012, 29(6): 116201
[4] PENG Bei, Horacio D. Espinosa. This paper has been withdrawn by the first author due to misconduct, see Chin. Phys. Lett. 26, 079901, 2009
In Situ Tests of Multiwalled Carbon Nanotubes with Strength Close to Theoretical Predictions
[J]. Chin. Phys. Lett., 2009, 26(1): 116201
Viewed
Full text


Abstract