Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 077701    DOI: 10.1088/0256-307X/30/7/077701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Wafer-Scale Flexible Surface Acoustic Wave Devices Based on an AlN/Si Structure
ZHANG Cang-Hai, YANG Yi, ZHOU Chang-Jian, SHU Yi, TIAN He, WANG Zhe, XUE Qing-Tang, REN Tian-Ling**
Institute of Microelectronics, Tsinghua University, Beijing 100084 Tsinghua National Laboratory for Information Science and Technology (TNLIST), Tsinghua University, Beijing 100084
Cite this article:   
ZHANG Cang-Hai, YANG Yi, ZHOU Chang-Jian et al  2013 Chin. Phys. Lett. 30 077701
Download: PDF(1455KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Wafer-scale flexible surface acoustic wave (SAW) devices based on AlN/silicon structure are demonstrated. The final fabricated devices with a 50μm-thickness silicon wafer exhibit good flexibility with a bending curvature radius of 8 mm. Measurements under free and bending conditions are carried out, showing that the central frequency shifts little as the curvature changes. SAW devices with central frequency about 191.9 MHz and Q-factor up to 600 are obtained. The flexible technology proposed is directly applied to the wafer silicon substrate in the last step, providing the potential of high performance flexible wafer-scale devices by direct integration with mature CMOS and MEMS technology.
Received: 08 May 2013      Published: 21 November 2013
PACS:  77.55.df (For silicon electronics)  
  85.50.-n (Dielectric, ferroelectric, and piezoelectric devices)  
  77.55.hd (AlN)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/077701       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/077701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Cang-Hai
YANG Yi
ZHOU Chang-Jian
SHU Yi
TIAN He
WANG Zhe
XUE Qing-Tang
REN Tian-Ling
[1] Zhou L et al 2006 Appl. Phys. Lett. 88 083502
[2] Someya T, Sekitani T 2009 Procedia Chem. 1 9
[3] Duchaine V et al 2009 IEEE Int. Conf. Robotics Automation (Kobe, Japan May 12–17 2009) p 2625
[4] Kudo H et al 2006 Biosens. Bioelectron. 22 558
[5] Xuefeng Z, Der-Song L, Oralkan O and Butrus T K Y 2008 J. MicroelectroMech. Syst. 17 446
[6] Sankaralingam S, Gupta B 2012 Microwave Opt. Technol. Lett. 54 1508
[7] Saito H et al 2005 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE Cat. No.05CH37610) p 96
[8] Zhang L et al 2009 Chin. Phys. Lett. 26 026801
[9] Wang H et al 2010 Chin. Phys. Lett. 27 028502
[10] Wang H et al 2009 Chin. Phys. Lett. 26 118501
[11] Meitl M A et al 2006 Nat. Mater. 5 33
[12] Dahl-Young K et al 2006 Science 311 208
[13] Dae-Hyeong K et al 2008 Proc. Natl. Acad. Sci. USA 105 18675
[14] Song J et al2009 J. Vac. Sci. Technol. A 27 1107
[15] Ahn B Y et al 2009 Science 323 1590
[16] Singh A V, Chandra S 2011 Thin Solid Films 519 5846
Zhan J et al 2012 Tsinghua Sci. Technol. 17 78
Yin C, Jia Z, Ma W C and Ren T L 2011 Tsinghua Sci. Technol. 16 151
Wang Y F et al 2011 Tsinghua Sci. Technol. 16 290
[17] Davood S and Stephen W B 2013 Nano Lett. 13 315
[18] Jhonathan P R G T S and Muhammad M H 2013 Appl. Phys. Lett. 102 064102
[19] Fu Y Q et al 2012 Appl. Phys. Lett. 101 194101
[20] Zhou C J et al 2012 IEDM 2012 IEEE International Electron Devices Meeting (San Francisco, CA, USA, 10–13 December 2012)
Related articles from Frontiers Journals
[1] LIU Li-Fang, PAN Li-Yang, ZHANG Zhi-Gang, XU Jun. Impact of Band-Engineering to Performance of High-k Multilayer Based Charge Trapping Memory[J]. Chin. Phys. Lett., 2015, 32(08): 077701
[2] LI Zi-Zhen, TANG Rong-Sheng, WANG Xiao-Feng, ZHENG Fen-Gang. An Enhanced Photoelectric Conversion Efficiency of n-Type Crystalline Silicon p–n Junctions Using a Ferroelectric Passivation Layer[J]. Chin. Phys. Lett., 2014, 31(04): 077701
[3] CHOI Youn-Ok, KIM Sang-Yong. Controllable Ultra Low- k by Via-Typed Air Gap with the Better Design Margin for Logic Devices below 45nm Node[J]. Chin. Phys. Lett., 2010, 27(9): 077701
Viewed
Full text


Abstract