Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 070503    DOI: 10.1088/0256-307X/30/7/070503
GENERAL |
Cusp Bursting and Slow-Fast Analysis with Two Slow Parameters in Photosensitive Belousov–Zhabotinsky Reaction
LI Xiang-Hong1,2, BI Qin-Sheng2**
1Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043
2Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013
Cite this article:   
LI Xiang-Hong, BI Qin-Sheng 2013 Chin. Phys. Lett. 30 070503
Download: PDF(7489KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By introducing weakly periodic perturbation given by light, the three-variable model of photosensitive Belousov–Zhabotinsky reaction with two time scales may possess two slow processes. The codimension-2 bursting called cusp bursting is novel, especially the phenomenon that is of the transiently quiescent state mixed among repetitively large amplitude oscillations. The slow-fast dynamics analysis with two slow parameters, based on overlapping the codimension-2 bifurcation diagram of the fast subsystem with the 3-dimensional transition phase portrait of the whole system, is proposed to reveal the bifurcation mechanism of bursting oscillation with two slow variables. The adjustment behavior of slow parameters is used to explain the transformation between the spiking state and quiescent state.
Received: 11 March 2013      Published: 21 November 2013
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/070503       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/070503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xiang-Hong
BI Qin-Sheng
[1] Gyorgyi L and Field R J 1992 Nature 355 808
[2] Huh D S et al 2006 Chem. Phys. Lett. 417 555
[3] Toth R et al 2008 J. Chem. Phys. 129 184708
[4] Li Q S and Zhu R 2004 Chaos Solitons Fractals 19 195
[5] Wang P Y et al 2005 Chin. Phys. Lett. 22 287
[6] Mahara H et al 2005 Physica D 205 275
[7] Agladze K et al 1995 Physica D 84 238
[8] Bi Q S 2010 Sci. Chin. Technol. Sci.. 53 748
[9] Davis M J and Klippenstein S J 2002 J. Phys. Chem. A 106 5860
[10] Mease K D 2005 Appl. Math. Comput. 164 627
[11] Meng P et al 2011 Sci. Chin. Technol. Sci.. 54 2024
[12] Rinzel J 1985 Ordinary and Partial Differential Equations (Berlin: Springer-Verlag) p 304
[13] Han X J et al 2009 Phys. Lett. A 373 3643
[14] Curtu R 2010 Physica D 239 504
[15] Straube R 2006 J. Phys.: Conf. Ser. 55 214
[16] Li X H and Bi Q S 2013 Chin. Phys. Lett. 30 010503
[17] Li X H and Bi Q S 2012 Chin. Phys. B 21 060505
[18] Meng X Y et al 2011 J. Comput. Neurosci. 31 117
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 070503
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 070503
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 070503
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 070503
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 070503
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 070503
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 070503
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 070503
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 070503
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 070503
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 070503
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 070503
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 070503
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 070503
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 070503
Viewed
Full text


Abstract