Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 010501    DOI: 10.1088/0256-307X/30/1/010501
GENERAL |
Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field
ZHANG Yan-Chao, HE Ji-Zhou**
Department of Physics, Nanchang University, Nanchang 330031
Cite this article:   
ZHANG Yan-Chao, HE Ji-Zhou 2013 Chin. Phys. Lett. 30 010501
Download: PDF(616KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the efficiency at maximum power of a nanothermoelectric heat engine consisting of one spin-degenerate quantum dot embedded between two reservoirs at different temperatures and chemical potentials in an external magnetic field. Based on the stochastic master equation the maximum power and the corresponding efficiency at maximum power are calculated in different external magnetic fields. The result shows that both the maximum power and the corresponding efficiency at maximum power decrease with an increase of the external magnetic field. In the weak magnetic field the corresponding efficiency at maximum power is slightly larger than the Curzon–Ahlborn (CA) efficiency, while in the large magnetic field it is obviously lower than CA efficiency.
Received: 05 August 2012      Published: 04 March 2013
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  05.70.-a (Thermodynamics)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/010501       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/010501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yan-Chao
HE Ji-Zhou
[1] Curzon F L and Ahlborn B 1975 Am. J. Phys. 43 22
[2] Chen L and Yan Z 1989 J. Chem. Phys. 90 3740
[3] Chen J 1994 J. Phys. D: Appl. Phys. 27 1144
[4] Tu Z C 2008 J. Phys. A: Math. Theor. 41 312003
[5] Esposito M, Kawai R, Lindenberg K and van den Broeck C 2010 Phys. Rev. Lett. 105 150603
[6] Van den Broeck C 2005 Phys. Rev. Lett. 95 190602
[7] Izumida Y and Okuda K 2012 Europhys. Lett. 97 10004
[8] Schmiedl T and Seifert U 2008 Europhys. Lett. 81 20003
[9] Schmiedl T and Seifert U 2008 Europhys. Lett. 83 30005
[10] Tu Z C 2012 Chin. Phys. B 21 020513
[11] Humphrey T E, Newbury R, Taylor R P and Linke H 2002 Phys. Rev. Lett. 89 116801
[12] Humphrey T E and Linke H 2005 Phys. Rev. Lett. 94 096601
[13] O'Dwyer M F, Humphrey T E and Linke H 2006 Nanotechnology 17 S338
[14] Wang X M, He J Z and Liang H N 2009 Phys. Scr. 80 035701
[15] Wang X M, He J Z and Tang W 2009 Chin. Phys. 18 984
[16] Esposito M, Lindenberg K and Van den Broeck C 2009 Europhys. Lett. 85 60010
[17] Esposito M, Lindenberg K and Van den Broeck C 2009 Phys. Rev. Lett. 102 130602
[18] Esposito M, Kawai R, Lindenberg K and Van den Broeck C 2010 Phys. Rev. E 81 041106
[19] Esposito M, Kawai R, Lindenberg K and Van den Broeck C 2010 Europhys. Lett. 89 20003
[20] Bonet E, Deshmukh M M and Ralph D C 2002 Phys. Rev. B 65 045317
[21] Harbola U, Esposito M and Mukamel S 2006 Phys. Rev. B 74 235309
Related articles from Frontiers Journals
[1] Mengmeng Xi, Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Coulomb Thermoelectric Drag in Four-Terminal Mesoscopic Quantum Transport[J]. Chin. Phys. Lett., 2021, 38(8): 010501
[2] Chen Wang, Lu-Qin Wang, and Jie Ren. Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States[J]. Chin. Phys. Lett., 2021, 38(1): 010501
[3] Xiaowei Liu, Jingyuan Guo, Zhibing Li. Critical One-Dimensional Absorption-Desorption with Long-Ranged Interaction[J]. Chin. Phys. Lett., 2019, 36(8): 010501
[4] Yu-Hong Zhang, Hui Liu, Ying-Rong Han, Ya-Fei Chen, Su-Hua Zhang, Yong Zhan. Temperature Impacts on Transient Receptor Potential Channel Mediated Calcium Oscillations in Astrocytes[J]. Chin. Phys. Lett., 2017, 34(9): 010501
[5] Nan-Xian Chen, Bo-Hua Sun. Note on Divergence of the Chapman–Enskog Expansion for Solving Boltzmann Equation [J]. Chin. Phys. Lett., 2017, 34(2): 010501
[6] Pei-Yan Peng, Chang-Kui Duan. A Maxwell Demon Model Connecting Information and Thermodynamics[J]. Chin. Phys. Lett., 2016, 33(08): 010501
[7] SU Hao, SHI Zhi-Cheng, HE Ji-Zhou. Optimal Performance Analysis of a Three-Terminal Thermoelectric Refrigerator with Ideal Tunneling Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(10): 010501
[8] WEN Fa-Kai, YANG Zhan-Ying, CUI Shuai, CAO Jun-Peng, YANG Wen-Li. Spectrum of the Open Asymmetric Simple Exclusion Process with Arbitrary Boundary Parameters[J]. Chin. Phys. Lett., 2015, 32(5): 010501
[9] ZHOU Zong-Li, LI Min, YE Jian, LI Dong-Peng, LOU Ping, ZHANG Guo-Shun. The Heisenberg Model after an Interaction Quench[J]. Chin. Phys. Lett., 2014, 31(10): 010501
[10] LI Cong, ZHANG Yan-Chao, HE Ji-Zhou. A Nanosize Quantum-Dot Photoelectric Refrigerator[J]. Chin. Phys. Lett., 2013, 30(10): 010501
[11] Roumen Tsekov, Marga C. Lensen. Brownian Motion and the Temperament of Living Cells[J]. Chin. Phys. Lett., 2013, 30(7): 010501
[12] Clóves G. Rodrigues. Onset for the Electron Velocity Overshoot in Indium Nitride[J]. Chin. Phys. Lett., 2012, 29(12): 010501
[13] XIAO Yao, HUA Da-Yin. Promotion of Cooperation in a Spatial Public Goods Game with Long Range Learning and Mobility[J]. Chin. Phys. Lett., 2012, 29(11): 010501
[14] WU An-Cai . Percolation of Mobile Individuals on Weighted Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(11): 010501
[15] ZHANG Yan-Ping, HE Ji-Zhou**, XIAO Yu-Ling . An Approach to Enhance the Efficiency of a Brownian Heat Engine[J]. Chin. Phys. Lett., 2011, 28(10): 010501
Viewed
Full text


Abstract