Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 010502    DOI: 10.1088/0256-307X/30/1/010502
GENERAL |
Nonergodic Brownian Motion in a Collinear Particle-Coupled Harmonic Chain Model
LU Hong1**, BAO Jing-Dong2
1School of Physics and Chemistry, Xihua University, Chengdu 610039
2Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
LU Hong, BAO Jing-Dong 2013 Chin. Phys. Lett. 30 010502
Download: PDF(446KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the nonergodic Brownian dynamics in a collinear particle-coupled harmonic chain model, in which the chain is free at one end and fixed at the other end. The behaviors of the particle are mainly studied: the velocity thermalizes faster than the coordinate, and the asymptotic result depends on its initial coordinate preparation which is indeed a kind of the nonergodic behavior.
Received: 17 September 2012      Published: 04 March 2013
PACS:  05.20.Gg (Classical ensemble theory)  
  02.60.Cb (Numerical simulation; solution of equations)  
  05.40.Ca (Noise)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/010502       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/010502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Hong
BAO Jing-Dong
[1] Lennard-Jones J E and Strachan C 1935 Proc. R. Soc. A 150 442
Lennard-Jones J E and Devonshire A F 1936 Proc. R. Soc. A 156 6
Devonshire A F 1937 Proc. R. Soc. A 158 269
[2] Bianconi A, Corradini M, Cristiano A, Leali M, Lodi Rizzini E, Venturelli L, Zurlo N and Doná R 2008 Phys. Rev. A 78 022506
[3] Takaokal T and Komeda T 2008 Phys. Rev. Lett. 100 046104
[4] Ford G W, Kac M and Mazur P 1965 J. Math. Phys. 6 504
[5] Ford G W, Lewis J T and O'Connell R F 1988 J. Stat. Phys. 53 439
1988 Phys. Rev. A 37 4419
[6] Rosa J and Beims M W 2008 Phys. Rev. E 78 031126
[7] Rubin R J 1963 Phys. Rev. 131 964
[8] Plyukhin A V and Schofield J 2002 Phys. Rev. E 65 026603
[9] Kim J and Sawada I 2000 Phys. Rev. E 61 R2172
[10] Barrio R A, Galeener F L and Martinez E 1984 Phys. Rev. Lett. 52 1786
[11] Gendelman O V and Savin A V 2000 Phys. Rev. Lett. 84 2381
[12] Segal D 2009 Phys. Rev. E 79 012103
[13] Chaudhuri J R, Chaudhury P and Chattopadhyay S 2009 J. Chem. Phys. 130 234109
[14] Potiguara F Q and Costa U M S 2004 Physica A 342 145
[15] Plyukhin A V and Schofield J 2001 Phys. Rev. E 64 041103
[16] Lee M H 2001 Phys. Rev. Lett. 87 250601
2007 Phys. Rev. Lett. 98 110403
[17] Lu H, Qin L and Bao J D 2009 Acta Phys. Sin. 58 8127 (in Chinese)
[18] Lu H and Bao J D 2011 Chin. Phys. Lett. 28 040505
[19] Lapas L C, Morgado R, Vainstein M H, Rubí J M and Oliveira F A 2008 Phys. Rev. Lett. 101 230602
[20] Lee M H 2002 Physica A 314 583
Lee M H 2006 Physica A 365 150
[21] Weiss U 1999 Quantum Dissipative Syst. 2nd edn (Singapore: World Scientific)
[22] Caldeira A O and Leggett A J 1981 Phys. Rev. Lett. 46 211
Caldeira A O and Leggett A J 1983 Physica A 121 587 1983
Caldeira A O and Leggett A J 1983 Ann. Phys. (N. Y.) 149 374
[23] Siegle P, Goychuk I and H?nggi P 2010 Phys. Rev. Lett. 105 100602
[24] Pottier N 2003 Physica A 317 061101
[25] Mai T and Dhar A 2007 Phys. Rev. E 75 061101
[26] Bao J D, Zhuo Y Z, Oliveira F A andH?nggi P 2006 Phys. Rev. E 74 061111
[27] Qin L, Yang Y Y, Lu H and Bao J D 2010 Commun. Theor. Phys. 53 1011
[28] Bao J D, H?nggi P and Zhuo Y Z 2005 Phys. Rev. E 72 061107
[29] Mokshin A V, Yulmetyev R M and H?nggi P 2005 Phys. Rev. Lett. 95 200601
Related articles from Frontiers Journals
[1] Chu-Han Wang, Le Fang. A Closure for Isotropic Turbulence Based on Extended Scale Similarity Theory in Physical Space[J]. Chin. Phys. Lett., 2018, 35(8): 010502
[2] Le Fang, Ming-Wei Ge. Mathematical Constraints in Multiscale Subgrid-Scale Modeling of Nonlinear Systems[J]. Chin. Phys. Lett., 2017, 34(3): 010502
[3] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 010502
[4] LIU Jue-Ping, YUAN Bao-Lun. Dynamical Temperature of a One-Dimensional Many-Body System in the Lennard-Jones Model[J]. Chin. Phys. Lett., 2001, 18(9): 010502
Viewed
Full text


Abstract