Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 010306    DOI: 10.1088/0256-307X/30/1/010306
GENERAL |
Fractals in Quantum Information Process
BI Feng, LI Chuan-Feng**
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
Cite this article:   
BI Feng, LI Chuan-Feng 2013 Chin. Phys. Lett. 30 010306
Download: PDF(584KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In the recent work of Kiss et al. [Phys. Rev. Lett. 107 (2011) 100501], the evolvement of two-qubit quantum states in a measurement-based purification process is studied. As they pointed out, the purification results manifest sensitivity to the applied initial states. The convergence regions to different stable circles are depicted on a complex plane. Because of the result patterns' likeness to typical fractals, we make further study on the interesting patterns' connection to fractals. Finally, through a numerical method we conclude that the boundaries of different islands of the patterns are fractals, which possess a non-integral fractal dimension. Also, we show that the fractal dimension would vary with the change of the portion of the noise added to the initial states.
Received: 09 October 2012      Published: 04 March 2013
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  05.45.Df (Fractals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/010306       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/010306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
BI Feng
LI Chuan-Feng
[1] Bovill C 1996 Fractal Geometry in Architecture and Design (Boston: Birkhauser)
[2] Mandelbrot B B 1982 Fractal Geometry of Nature (San Francisco: Freeman)
[3] Sornette D 2004 Crit. Phenom. Nat. Sci.: Chaos Fractals Self Organization Disorder: Concepts Tools (Berlin: Springer) p 128
[4] Ercolini E et al 2007 Phys. Rev. Lett. 98 058102
[5] Pickover C A 2009 Math. Book: From Pythagoras 57th Dimension, 250 Milestones in the History of Mathematics (Sterling) p 310
[6] Procaccia I 1988 Nature 333 618
[7] Kiss T et al 2006 Phys. Rev. A 74 040301(R)
Bhattacharya T et al 2000 Phys. Rev. Lett. 85 4852
[8] Horodecki R et al 2009 Rev. Mod. Phys. 81 865
[9] Bennett C H et al 1996 Phys. Rev. Lett. 76 722
[10] Bechmann-Pasquinucci H, Huttner B and Gisin N 1998 Phys. Lett. A 242 198
[11] Kiss T, Vymetal S, Toth L D, Gabris A, Jex I and Alber G 2011 Phys. Rev. Lett. 107 100501
Alber G et al 2001 J. Phys. A 34 8821
[12] Falconer K 2003 Fractal Geometry (New York: Wiley)
[13] Mandelbrot B B 2004 Fractals and Chaos (Berlin: Springer)
[14] Fano U 1957 Rev. Mod. Phys. 29 74
Fano U 1983 Rev. Mod. Phys. 55 855
[15] Bourke P 2006 Comput. Graphics 30 134
[16] David H 2001 Multifractals (London, Chapman and Hall)
[17] Soille P and Rivest J F 1996 J. Vis. Commun. Image. R. 7 217
Gorski A Z 2001 J. Phys. A 34 7933
[18] Parker S, Bose S and Plenio M B 2000 Phys. Rev. A 61 032305
Related articles from Frontiers Journals
[1] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 010306
[2] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 010306
[3] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 010306
[4] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 010306
[5] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 010306
[6] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 010306
[7] Bing-Bing Chai, Jin-Liang Guo. Distillability of Sudden Death in Qutrit-Qutrit Systems under Global Mixed Noise[J]. Chin. Phys. Lett., 2019, 36(5): 010306
[8] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 010306
[9] Sheng-Li Zhang, Chen-Hui Jin, Jian-Hong Shi , Jian-Sheng Guo, Xu-Bo Zou, Guang-Can Guo. Continuous Variable Quantum Teleportation in Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2017, 34(4): 010306
[10] Sheng-Li Zhang, Chen-Hui Jin, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou, Guang-Can Guo. Decoy State Quantum Key Distribution via Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2016, 33(12): 010306
[11] Yong-Gang Tan, Qiang Liu. Measurement-Device-Independent Quantum Key Distribution with Two-Way Local Operations and Classical Communications[J]. Chin. Phys. Lett., 2016, 33(09): 010306
[12] Jin-Tao Tan, Yun-Rong Luo, Zheng Zhou, Wen-Hua Hai. Combined Effect of Classical Chaos and Quantum Resonance on Entanglement Dynamics[J]. Chin. Phys. Lett., 2016, 33(07): 010306
[13] Sheng-Li Zhang, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou. Distillation of Atmospherically Disturbed Continuous Variable Quantum Entanglement with Photon Subtraction[J]. Chin. Phys. Lett., 2016, 33(07): 010306
[14] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 010306
[15] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 010306
Viewed
Full text


Abstract