Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 020203    DOI: 10.1088/0256-307X/28/2/020203
GENERAL |
Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations
WU Hua, ZHANG Da-Jun**
Department of Mathematics, Shanghai University, Shanghai 200444
Cite this article:   
WU Hua, ZHANG Da-Jun 2011 Chin. Phys. Lett. 28 020203
Download: PDF(377KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For each non-isospectral Ablowitz–Ladik equation a strong symmetry operator is given. The strong symmetry contains time variable explicitly and by means of it two sets of symmetries are generated. Functional derivative formulae between the strong symmetry and symmetries are derived, by which the obtained symmetries are shown to compose a centerless Kac–Moody–Virasoro algebra. Master symmetries for non-isospectral Ablowitz–Ladik equations are also discussed.
Keywords: 02.30.Ik      05.45.Yv     
Received: 25 September 2010      Published: 30 January 2011
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/020203       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/020203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Hua
ZHANG Da-Jun
[1] Fokas A S 1987 Stud. Appl. Math. 77 253
[2] Zhang D J, Ning T K, Bi J B and Chen D Y 2006 Phys. Lett. A 359 458
[3] Zhang D J and Chen S T 2010 Stud. Appl. Math. 125 393
[4] Ablowitz M J and Ladik J F 1975 J. Math. Phys. 16 598
[5] Chen D Y and Zhang D J 1996 J. Math. Phys. 37 5524
[6] Ma W X and Fuchssteiner B 1999 J. Math. Phys. 40 (1999) 2400
[7] Fuchssteiner B and Fokas A S 1981 Physica D 4 47
[8] Zhang D J and Chen S T 2010 Stud. Appl. Math. 125 419
[9] Zhang D J and Chen D Y 2002 J. Phys. A: Math. Gen. 35 7225
[10] Fuchssteiner B 1983 Prog. Theor. Phys. 70 1508
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 020203
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 020203
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 020203
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 020203
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 020203
[6] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 020203
[7] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 020203
[8] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 020203
[9] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 020203
[10] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 020203
[11] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 020203
[12] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 020203
[13] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 020203
[14] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 020203
[15] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 020203
Viewed
Full text


Abstract