CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Giant Temperature Coefficient of Resistance in ZnO/Si (111) Thin Films |
ZHOU Xiao-Fang1, ZHANG Hui1, LI Yong1, TANG Xiao-Dong2, CHEN Qing-Ming1, ZHANG Peng-Xiang1 |
1Institute of Advanced Material for Photoelectronics, Kunming University of Science and Technology, Kunming 6500512Laboratory of Polar Materials and Devices, East China Normal University, Shanghai 200241 |
|
Cite this article: |
ZHOU Xiao-Fang, ZHANG Hui, LI Yong et al 2010 Chin. Phys. Lett. 27 018101 |
|
|
Abstract Giant negative temperature coefficient of resistance (TCR) was observed in ZnO/Si (111) thin films. The films were grown using the pulsed laser deposition (PLD) technique, taking Si (111) wafer as substrates, with a substrate at the temperature below 450°C in the PLD. It is found that both TCR-temperature behavior and TCR value are strongly affected by deposition temperature. The maximal TCR value over -10.9%K-1 can be observed at the deposition temperature from 20°C to 350°C and reaches to -13%K-1 at deposition temperature 20°C where the film shows X-ray diffraction amorphous. The results suggest that the ZnO/Si films demonstrate great potentials when used in a low-cost, high-performance, non-cooling and highly sensitive bolometer.
|
Keywords:
81.05.Dz
73.43.Fj
73.50.-h
|
|
Received: 05 June 2009
Published: 30 December 2009
|
|
PACS: |
81.05.Dz
|
(II-VI semiconductors)
|
|
73.43.Fj
|
(Novel experimental methods; measurements)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
|
|
|
[1] Tang Z K, Wong G K and Yu P 1998 App1. Phys. Lett. 72 3270 [2] Huang M H, Mao S and Feick H 2001 Science 2921897 [3] Shi X L, Yuan J and Zhou W et al 2007 Chin. Phys.Lett. 24 2994 [4] Zhang C Z and Gao H et al 2008 Chin. Phys. Lett. 25 302 [5] Chen Y, Bagnall D M and Koh H J 1998 J. Appl. Phys. 84 3912 [6] Liddard K C 1984 Infrared Phys. 24 57 [7] Tanaka A, Mastsumoto S and Tsukamoto N et al 1996 IEEE Trans. Electron. Devices ED 43 1844 [8] Jerominek H, Picard F and Swart N et al 1996 Proc.SPIE 2746 60 [9] Mottin E, Bain A and Martin J L et al 2003 Proc.SPIE 4820 200 [10] Venkatasubramanian C et al 2009 Nucl. Instrum.Methods B DOI:10.1016/j.nimb.2009.01.152 [11] Zhu S J, Liu X and Peng J B et al 2003 PreciousMetals 24 49 [12] Zhang P X, Zhu~S J and Liu X et al 2006 Jan. J.Appl. Phys. 45 727 [13] Liu J H, Li G Z et al 2000 Acta Phys. Sin. 492017 (in Chinese) [14] Leiter F, Alves H and Pfisterer D 2003 Physica B 340 201 [15] Hofmann D M, Pfisterer D and Sann J 2007 Appl. Phys.A: Mater. Sci. Proc. 88 147 [16] Fan H B, Yang S Y, Zhang P F et al 2007 Chin. Phys.Lett. 24 2108 [17] Janotti A and van de Walle C G 2005 Appl. Phys.Lett. 87 122102 [18] Pandis C, Brilis N and Tsamakis D et al 2006 Solid-State Electron. 50 1119 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|