CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Strong-Superstrong Transition in Glass Transition of Metallic Glass |
WANG Dan1, PENG Hong-Yan1, XU Xiao-Yu1, CHEN Bao-Ling1, WU Chun-Lei1, SUN Min-Hua2 |
1Key Laboratory of New Carbon-based Functional and Super-hard Materials of Heilongjiang Province, School of Physics and Electronic Engineering, Mudanjiang Teachers College, Mudanjiang 157012 2School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 |
|
Cite this article: |
WANG Dan, PENG Hong-Yan, XU Xiao-Yu et al 2010 Chin. Phys. Lett. 27 036401 |
|
|
Abstract Dynamic fragility of bulk metallic glass (BMG) of Zr64Cu16Ni10Al10 alloy is studied by three-point beam bending methods. The fragility parameter mfor Zr64Cu16Ni10Al10 BMG is calculated to be 24.5 at high temperature, which means that the liquid is a "strong" liquid, while to be 13.4 at low temperature which means that the liquid is a "super-strong" liquid. The dynamical behavior of Zr64Cu16Ni10Al10 BMG in the supercooled region undergoes a strong to super-strong transition. To our knowledge, it is the first time that a strong-to-superstrong transition is found in the metallic glass. Using small angle x-ray scattering experiments, we find that this transition is assumed to be related to a phase separation process in supercooled liquid.
|
Keywords:
64.70.P-
66.20.Ej
61.20.Ne
|
|
Received: 26 November 2009
Published: 09 March 2010
|
|
PACS: |
64.70.P-
|
(Glass transitions of specific systems)
|
|
66.20.Ej
|
(Studies of viscosity and rheological properties of specific liquids)
|
|
61.20.Ne
|
(Structure of simple liquids)
|
|
|
|
|
[1] Anderson P W 1995 Science 267 1615 [2] Angell C A 1995 Science 267 1924 [3] Debenedetti P G and Stillinger F H 2001 Nature 410 259 [4] Dyre J C 2004 Nature Mater. 3 749 [5] Sastry S 2001 Nature 409 164 [6] Novikov V N and Sokolov A P 2004 Nature 431 961 [7] Meng Q G, Zhou J K, Zheng H X and Li J G 2006 Scripta Mater. 54 777 [8] Angell C A 1985 J. Non-Cryst. Solids 73 1 [9] Bonmer R, Ngai K L, Angell C A and Plazek D J 1993 J. Chem. Phys. 99 4201 [10] Ange1l C A 1995 Science 267 1924 [11] Zhao Y, Bian X F and Hou X X 2006 Physica A 367 42 [12] Angell C A 1991 J. Non-Cryst. Solids 131--133 13 [13] Richet P 1984 Geochim. Cosmochim. Acta 48 471 [14] Angell C A 1993 J. Phys. Chem. 97 6339 [15] Angell C A, Moynihan1 C T and Hemmati M 2000 J. Non-Cryst. Solids 274 319 [16] Perera D N 1999 J. Phys.: Condens. Matter 11 3807 [17] Busch R 2000 JOM 52 39 [18] Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X and Wang W H 2007 Science 315 1385 [19] Hagy H E, 1963 Am. Ceram. Soc 46 93 [20] Oh J C, Ohkubo T, Kim Y C, Fleury E and Hono K 2005 Scripta Materialia 53 165 [21] Van de Moort\`{ele B, Epicier T, Pelletier J M and Soubeyroux J L 2004 J. Non-Cryst. Solid 345--346 169 [22] Pelletier J M and Van de Moort\`{ele B 2003 J. Non-Cryst. Solids 325 133 [23] Waniuk T A, Busch R, Masuhr A and Johnson W L 1998 Acta Materialia 46 5229 [24] Zhang T, Inoue A and Masumoto T 1991 Mater. Trans. 32 1005 [25] Du X H, Huang J C, Hsieh K C, Lai Y H, Chen H M, Jang J S C and Liaw P K 2007 Appl. Phys. Lett. 91 131901 [26] Porod G 1982 Small Angle X-Ray Scattering ed Glatter O and Kratky O (London: Academic) p 42 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|