CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Phase Transition Behavior of LiCr 0.35 Mn0.65O2 under High Pressure by Electrical Conductivity Measurement |
CUI Xiao-Yan1,2, HU Ting-Jing1, HAN Yong-Hao1, GAO Chun-Xiao1, PENG Gang1, LIU Cai-Long1, WU Bao-Jia1, WANG Yue1, LIU Bao1, REN Wan-Bin1, LI Yan1, SU Ning-Ning1, ZOU Guang-Tian1, DU Fei3, CHEN Gang3 |
1State Key Laboratory for Superhard Materials, Jilin University, Changchun 130012 2College of Physics, Jilin Normal University, Siping 136000 3College of Physics, Jilin University, Changchun 130012 |
|
Cite this article: |
CUI Xiao-Yan, HU Ting-Jing, HAN Yong-Hao et al 2010 Chin. Phys. Lett. 27 036402 |
|
|
Abstract The electrical conductivity of powdered LiCr 0.35 Mn0.65O2 is measured under high pressure up to 26.22 GPa in the temperature range 300-413 K by using a diamond anvil cell. It is found that both conductivity and activation enthalpy change discontinuously at 5.36 GPa and 21.66 GPa. In the pressure range 1.10-5.36 GPa, pressure increases the activation enthalpy and reduces the carrier scattering, which finally leads to the conductivity increase. In the pressure ranges 6.32-21.66 GPa and 22.60-26.22 GPa, the activation enthalpy decreases with pressure increasing, which has a positive contribution to electrical conductivity increase. Two pressure-induced structural phase transitions are found by in-situ x-ray diffraction under high pressure, which results in the discontinuous changes of conductivity and activation enthalpy.
|
Keywords:
64.60.-i
72.20.-i
07.35.+k
|
|
Received: 02 November 2009
Published: 09 March 2010
|
|
PACS: |
64.60.-i
|
(General studies of phase transitions)
|
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
|
|
|
[1] Johnston W D, Heikes R R and Sestrich D 1958 J. Phys. Chem. Solids 7 1 [2] Goodenough J B, Wickham D G and Croft W J 1958 J. Phys. Chem. Solids 5 107 [3] Armstrong A R and Bruce P G 1996 Nature 381 499 [4] Dittrich G et al 1969 Z. Anorg. Allg. Chem. 365 337 [5] Capitaine F, Gravereau P and Delmas C 1996 Solid State Ionics 89 197 [6] Gummow R J, Liles D C and Thackeray M M 1993 Mater. Res. Bull. 28 1249 [7] Ceder G, Mishra S K 1999 Electrochem. Solid-State Lett. 2 550 [8] Hwang S J et al 2000 Chem. Mater. 12 1818 [9] MacNeil D D, Lu Z and Dahn J R 2002 J. Electrochem. Soc. 149 A1332 [10] Ohzuku T and Makimura Y 2001 Chem. Lett. 30 744 [11] Myung S T et al 2003 J. Electrochem. Soc. 150 A1560 [12] Gopukumar S et al 2004 Electrochim. Acta 49 803 [13] Venkatraman S et al 2003 Chem. Mater. 15 5003 [14] Akimoto J et al 2003 Chem. Mater. 15 2984 [15] Wei Y et al 2006 Electrochim. Acta 51 3365 [16] Alc\'{antara R et al 2004 J. Electroanalyt. Chem. 566 187 [17] Han Y H et al 2005 Chin. Phys. Lett. 22 1347 [18] Li M et al 2007 Chin. Phys. Lett. 24 54 [19] He C Y et al 2007 Chin. Phys. Lett. 24 1070 [20] Yu C L et al 2007 Chin. Phys. Lett. 24 2204 [21] Du F et al 2007 J. Appl. Phys. 102 113906 [22] Coustier F et al 1999 J. Electrochem. Soc. 146 1355 [23] Kano S and Sato M 1995 Solid State Ionics 79 215 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|