GENERAL |
|
|
|
|
Suppression of Chaos in a Bose-Einstein Condensate Loaded into a Moving Optical Superlattice Potential |
LUO Xiao-Bing1, XIA Xiu-Wen1, ZHANG Xiao-Fei2,3 |
1Department of Physics, Jinggangshan University, Ji'an 3430092College of Science, Honghe University, Mengzi 6611003Institute of Physics, Chinese Academy of Sciences, Beijing 100190 |
|
Cite this article: |
LUO Xiao-Bing, XIA Xiu-Wen, ZHANG Xiao-Fei 2010 Chin. Phys. Lett. 27 040302 |
|
|
Abstract We have shown that the application of modulating the secondary lattice is an efficient route to suppressing the generation of chaotic traveling waves of a Bose-Einstein Condensate with attractive interatomic interaction loaded into a moving optical superlattice consisting of two lattices. With the Melnikov method, we obtain the optimal value of the relative phase between the two lattice harmonics for the control of chaos. We also find that the regularization route as the potential depth of the secondary lattice is varied and fairly rich, including the period-doubling bifurcations.
|
Keywords:
03.75.Lm
05.45.Gg
03.75.Kk
05.45.Yv
|
|
Received: 08 January 2010
Published: 27 March 2010
|
|
PACS: |
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
05.45.Gg
|
(Control of chaos, applications of chaos)
|
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
05.45.Yv
|
(Solitons)
|
|
|
|
|
[1] Dalfovo F, Griorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463 [2] Leggett A J 2001 Rev. Mod. Phys. 73 307 [3] Abdullaev F Kh and Kraenkel R A 2000 Phys. Rev. A 62 023613 [4] Lee C, Hai W, Shi L, Zhu X and Gao K 2001 Phys. Rev. A 64 053604 [5] Wang G F, Fu L B and Liu J 2006 Phys. Rev. A 73 013619 [6] Zhang C W, Liu J, Raizen M and Niu Q 2004 Phys. Rev. Lett. 93 074101 [7] Hai W H, Zhu Q and Rong S 2009 Phys. Rev. A 79 023603 [8] Eguiluz V M, Hernández-García E, Piro O and Balle S 1999 Phys. Rev. E 60 6571 [9] Chong G, Hai W and Xie Q 2005 Phys. Rev. E 71 016202 [10] Xu J and Luo X 2009 Chin. Phys. Lett. 26 040305 [11] Zhu Q, Hai W and Deng H 2007 Chin. Phys. Lett. 24 3077 [12] Zhu Q, Hai W and Rong S 2009 Phys. Rev. E 80 016203 [13] Hai W, Lu G and Zhong H 2009 Phys. Rev. A 79 053610 [14] Martin A D, Adams C S and Gardiner S A 2007 Phys. Rev. Lett. 98 020402 [15] Chong G, Hai W and Xie Q 2004 Phys. Rev. E 70 036213 [16] Filho V S, Gammal A, Frederico T and Tomio L 2000 Phys. Rev. A 62 033605 [17] Saito H and Ueda M 2001 Phys. Rev. Lett. 86 1406 [18] Coullet P and Vandenberghe N 2001 Phys. Rev. E 64 025202(R) [19] Luo X and Hai W 2005 Chaos 15 033702 [20] Wang Z, Shen K 2008 Cent. Eur. J. Phys. 6 402 [21] Chacón R, Bote D and Carretero-González R 2008 Phys. Rev. E 78 036215 [22] Louis P J Y, Ostrovskaya E A and Kivshar Y S 2005 Phys. Rev. A 71 023612 [23] Denschlag J H, Simsarian J E, Häfner H, McKenzie C, Browaeys A, Cho D, Helmerson K, Rolston S L and Phillips W D 2002 J. Phys. B 35 3095 [24] Aftalion A, Du Q and Pomeau Y 2003 Phys. Rev. Lett. 91 090407 [25] Guckenheimer J and Holmes P J 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector F (Berlin: Springer) [26] Melnikov V K, Trans 1963 Mosc. Math. Soc. 12 1 [27] Lima R and Pettini M 1990 Phys. Rev. A 41 726 } |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|