Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3169-3172    DOI:
Original Articles |
Hyperchaos--chaos--Hyperchaos Transition in a Class of On--Off Intermittent Systems Driven by a Family of Generalized Lorenz Systems
ZHOU Qian, CHEN Zeng-Qiang, YUAN Zhu-Zhi
Department of Automation, Nankai University, Tianjin 300071
Cite this article:   
ZHOU Qian, CHEN Zeng-Qiang, YUAN Zhu-Zhi 2008 Chin. Phys. Lett. 25 3169-3172
Download: PDF(830KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Blowout bifurcation in nonlinear systems occurs when a chaotic attractor lying in some symmetric subspace becomes transversely unstable. A class of five-dimensional continuous autonomous systems is considered, in which a two-dimensional subsystem is driven by a family of generalized Lorenz systems. The systems have some common dynamical characters. As the coupling parameter changes, blowout bifurcations occur in these systems and brings on change of the systems' dynamics. After the bifurcation the phenomenon of on--off intermittency appears. It is observed that the systems undergo a symmetric hyperchaos--chaos--hyperchaos transition via or after blowout bifurcations. An example of the systems is given, in which the drive system is the Chen system. We investigate the dynamical behaviour before and after the blowout bifurcation in the systems and make an analysis of the transition process. It is shown that in such coupled chaotic continuous systems, blowout bifurcation leads to a transition from chaos to hyperchaos for the whole systems, which provides a route to hyperchaos
Keywords: 05.45.Jn      05.45.Pq     
Received: 19 May 2008      Published: 29 August 2008
PACS:  05.45.Jn (High-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03169
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Qian
CHEN Zeng-Qiang
YUAN Zhu-Zhi
Related articles from Frontiers Journals
[1] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 3169-3172
[2] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 3169-3172
[3] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 3169-3172
[4] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 3169-3172
[5] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 3169-3172
[6] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 3169-3172
[7] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 3169-3172
[8] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 3169-3172
[9] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 3169-3172
[10] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 3169-3172
[11] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 3169-3172
[12] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 3169-3172
[13] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 3169-3172
[14] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 3169-3172
[15] Eduardo L. Brugnago**, Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling[J]. Chin. Phys. Lett., 2011, 28(11): 3169-3172
Viewed
Full text


Abstract