Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3173-3176    DOI:
Original Articles |
Soliton Structure of a Higher Order (2+1)-Dimensional Nonlinear Evolution Equation of Barothropic Relaxing Media beneath High-Frequency Perturbations
Bouetou Bouetou Thomas1,2,3, Kuetche Kamgang Victor1,2, Timoleon Crepin Kofane 2,3
1Ecole Nationale Supérieure Polytechnique, University of Yaounde I, PO Box 8390, Cameroon2Department of Physics, Faculty of Science, University of Yaounde I, PO Box 812, Cameroon3The Abdus Salam International Centre for Theoretical Physics, PO Box 586, Strada Costiera, II-34014, Trieste, Italy
Cite this article:   
Bouetou Bouetou Thomas, Kuetche Kamgang Victor, Timoleon Crepin Kofane 2008 Chin. Phys. Lett. 25 3173-3176
Download: PDF(240KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract From the dynamical equation of barothopic relaxing media beneath pressure perturbations, followed with the reductive perturbative analysis, we derive and investigate the soliton structure of a (2+1)-dimensional nonlinear evolution equation describing high-frequency regime of perturbations. Thus, by means of the Hirota's bilinearization method, we unearth three typical patterns of loop-, cusp- and hump-like shapes depending strongly upon a dissipation parameter.
Keywords: 05.45.Yv     
Received: 16 April 2008      Published: 29 August 2008
PACS:  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03173
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bouetou Bouetou Thomas
Kuetche Kamgang Victor
Timoleon Crepin Kofane
[1] Tang X Y and Lou S Y 2003 J. Math. Phys. 444000
[2] Danylenko V A, Sorokina V V and Vladimirov V A 1993 J. Phys. A: Math. Gen. 26 7125
[3] Nayfey A H 1973 Perturbation Methods (New York:Wiley)
[4] Vakhnenko V O 1999 J. Math. Phys. 40 2011
[5] Lou S Y 1998 Phys. Rev. Lett. 80 5027
[6] Hirota R 1988 Direct Methods in Soliton Theory(Berlin: Springer)
[7] Drazin P G and Johnson R S 1989 Solitons: anIntroduction (Cambridge: Cambridge University Press)
[8] Kakuhata H and Konno K 1999 J. Phys. Soc. Jpn. 48 757
[9] Watanabe S 1977 J. Phys. Soc. Jpn. 45 276
[10] Sch$\ddot{a$fer T and Wayne C E 2004 Physica D 196 90
[11] Alagesan T and Porsezian K 1997 Chaos SolitonsFractals 8 1645
[12] Kuetche K V, Bouetou B T and Kofane T C 2006 J.Phys. A: Math. Gen. 39 12355
[13] Kuetche K V, Bouetou B T and Kofane T C 2008 Phys.Lett. A 372 665
[14] Kuetche K V, Bouetou B T and Kofane T C 2007 J.Phys. Soc. Jpn. 76 126001
[15] Kuetche K V, Bouetou B T and Kofane T C 2007 J.Phys. Soc. Jpn. 76 073001
[16] Parkes E J 2008 Chaos Solitons Fractals 38154
[17] Kuetche K V, Bouetou B T and Kofane T C 2007 J.Phys. A: Math. Theor. 40 5585
[18] Sakovich A and Sakovich S 2006 J. Phys. A: Math. Gen. 39 L361
[19] Kuetche K V, Bouetou B T and Kofane T C 2007 J.Phys. Soc. Jpn. 76 024004
[20] Kuetche K V, Bouetou B T and Kofane T C 2007 J.Phys. Soc. Jpn. 76 116002
[21] Malykh K V and Ogorodnikov I L 1977 Dynamics ofContinuous Media (Moscow: Novosibirsk)
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 3173-3176
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 3173-3176
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 3173-3176
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 3173-3176
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 3173-3176
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 3173-3176
[7] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 3173-3176
[8] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 3173-3176
[9] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 3173-3176
[10] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 3173-3176
[11] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 3173-3176
[12] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 3173-3176
[13] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 3173-3176
[14] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 3173-3176
[15] WU Hua, ZHANG Da-Jun** . Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations[J]. Chin. Phys. Lett., 2011, 28(2): 3173-3176
Viewed
Full text


Abstract