Chin. Phys. Lett.  2008, Vol. 25 Issue (3): 874-877    DOI:
Original Articles |
Synchronization between Different Networks
LI Ying1;LIU Zeng-Rong2;ZHANG Jian-Bao1
1Department of Mathematics, Shanghai University, Shanghai 2004442Institute of Systems Biology, Shanghai University, Shanghai 200444
Cite this article:   
LI Ying, LIU Zeng-Rong, ZHANG Jian-Bao 2008 Chin. Phys. Lett. 25 874-877
Download: PDF(118KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Synchronization between two networks with different topology structures and different dynamical behaviours is studied. These two different networks are
driving and responding networks, respectively. Under the preconditions that the driving network gets synchronization, we give the conditions for the responding network to be synchronized to the same dynamics as the driving network with the help of the open-plus-closed-loop method. Then a example is given to verify the validity of the theoretical results.
Keywords: 05.45.Xt      03.65.Vf     
Received: 27 November 2007      Published: 27 February 2008
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I3/0874
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Ying
LIU Zeng-Rong
ZHANG Jian-Bao
[1] Strogatz S H 2001 Nature 410 268
[2] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[3] Ma Z, Liu Z and Zhang G 2006 Chaos 16 023103
[4] Zhang J, Liu Z and Li Y 2007 Chin. Phys. Lett. 24(6) 1494
[5] Li C, Sun W and Kurths J 2007 Phys. Rev. E 76046204
[6] Li Y, Liu Z and Zhang J 2007 Chin. Phys. 16(9)2587
[7] Jackson E A and Grosu I 1995 Physica D 85 1
[8] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[9] Belykh V N, Belykh I V and Hasler M 2004 Physica D 195 159
[10] Belykh I V, Belykh V N and Hasler M 2006 Chaos 16 015102
[11] Nishikawa T and Motter A E 2006 Phys. Rev. E 73 065106(R)
[12] Lerescu A I, Constandache N, Oancea S and Grosu I 2004 Chaos Solit. Frac. 22 599
[13] Sprott J C 1994 Phys. Rev. E 55(5) 5285
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 874-877
[2] WANG Qiang, YE Chong, FU Li-Bin. Quantum Cyclotron Orbits of a Neutral Atom Trapped in a Triple Well with a Synthetic Gauge Field[J]. Chin. Phys. Lett., 2012, 29(6): 874-877
[3] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 874-877
[4] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 874-877
[5] YAN Long,FENG Xun-Li**,ZHANG Zhi-Ming,LIU Song-Hao. An Extra Phase for Two-Mode Coherent States Displaced in Noncommutative Phase Space[J]. Chin. Phys. Lett., 2012, 29(4): 874-877
[6] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 874-877
[7] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 874-877
[8] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 874-877
[9] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 874-877
[10] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 874-877
[11] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 874-877
[12] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 874-877
[13] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 874-877
[14] GUO Xiao-Yong, *, LI Jun-Min . Projective Synchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control[J]. Chin. Phys. Lett., 2011, 28(12): 874-877
[15] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 874-877
Viewed
Full text


Abstract