Chin. Phys. Lett.  2023, Vol. 40 Issue (9): 097405    DOI: 10.1088/0256-307X/40/9/097405
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Role of Lanthanide in the Electronic Properties of Rb$Ln_{2}$Fe$_{4}$As$_{4}$O$_{2}$ ($Ln$ = Sm and Ho) Superconductors
Yi-Na Huang1*, Zhao-Feng Ye1, Da-Yong Liu2, and Hang-Qiang Qiu1
1Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
2Department of Physics, School of Sciences, Nantong University, Nantong 226019, China
Cite this article:   
Yi-Na Huang, Zhao-Feng Ye, Da-Yong Liu et al  2023 Chin. Phys. Lett. 40 097405
Download: PDF(6923KB)   PDF(mobile)(7199KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We focus on the effect of ionic radius of lanthanides and the number of electrons in $4f$ orbitals on the superconducting temperature in 12442-type iron-based superconductors Rb$Ln_{2}$Fe$_{4}$As$_{4}$O$_{2}$ (Ln = Sm and Ho). Electronic properties of RbSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$ and RbHo$_{2}$Fe$_{4}$As$_{4}$O$_{2}$ with the largest differences of ionic radii and numbers of electrons in $4f$ orbital, and the largest difference of superconducting temperatures by using first-principles calculations. We predict that the ground state of Rb$Ln_{2}$Fe$_{4}$As$_{4}$O$_{2}$ is spin-density-wave-type in-plane striped antiferromagnet, and the magnetic moment around each Fe atom is about $2\mu_{\scriptscriptstyle{\rm B}}$. RbSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$ has a great influence on the energy band near the $\varGamma$ point, and a Dirac-like dispersion energy band appears. This band is mainly contributed by the $d_{z^2}$ orbital of Fe, which proves that RbSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$ has a stronger three-dimensionality. At the same time, this extra Fermi surface appears at the $\varGamma$ point, which also shows that Sm can effectively enhance the coupling strength within Fe$_{2}$As$_{2}$ bilayers. This is also confirmed by the charge density difference $\rho$(RbHo$_{2}$Fe$_{4}$As$_{4}$O$_{2}$)$\,-\rho$(RbSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$). It increases the internal coupling strength of the bilayer Fe$_{2}$As$_{2}$ layers, which in turn leads to a higher $T_{\rm c}$ of RbSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$ than RbHo$_{2}$Fe$_{4}$As$_{4}$O$_{2}$. Determining the details of their electronic structure, which may be closely related to superconductivity, is crucial to understanding the underlying mechanism. Such microscopic studies provide useful clues for our further research of other high-temperature superconductors.
Received: 21 April 2023      Published: 01 September 2023
PACS:  74.20.Pq (Electronic structure calculations)  
  71.15.-m (Methods of electronic structure calculations)  
  74.70.-b (Superconducting materials other than cuprates)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/9/097405       OR      https://cpl.iphy.ac.cn/Y2023/V40/I9/097405
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yi-Na Huang
Zhao-Feng Ye
Da-Yong Liu
and Hang-Qiang Qiu
[1] Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M, and Cao G H 2016 J. Am. Chem. Soc. 138 7856
[2] Kaluarachchi U S, Taufour V, Sapkota A, Borisov V, Kong T, Meier W R, Kothapalli K, Ueland B G, Kreyssig A, Valentí R, McQueeney R J, Goldman A I, Bud'ko S L, and Canfield P C 2017 Phys. Rev. B 96 140501
[3] Lee S, de la Peña G, Sun S X L, Mitrano M, Fang Y, Jang H, Lee J S, Eckberg C, Campbell D, Collini J, Paglione J, de Groot F M F, and Abbamonte P 2019 Phys. Rev. Lett. 122 147601
[4] Torsello D, Piatti E, Ummarino G A, Yi X, Xing X, Shi Z, Ghigo G, and Daghero D 2022 npj Quantum Mater. 7 10
[5] Wang Z C, He C Y, Tang Z T, Wu S Q, and Cao G H 2017 Sci. Chin. Mater. 60 83
[6] Iimura S, Matsuishi S, and Hosono H 2016 Phys. Rev. B 94 024512
[7] Wang B S, Wang Z C, Ishigaki K, Matsubayashi K, Eto T, Sun J, Cheng J G, Cao G H, and Uwatoko Y 2019 Phys. Rev. B 99 014501
[8] Wu S Q, Wang Z C, He C Y, Tang Z T, Liu Y, and Cao G H 2017 Phys. Rev. Mater. 1 044804
[9] Windsor Y W, Lee S E, Zahn D, Borisov V, Thonig D, Kliemt K, Ernst A, Schüßler-Langeheine C, Pontius N, Staub U, Krellner C, Vyalikh D V, Eriksson O, and Rettig L 2022 Nat. Mater. 21 514
[10] Jung S G, Shin S, Jang H, Kang W N, Han J H, Mine A, Tamegai T, and Park T 2018 NPG Asia Mater. 10 156
[11] Yuan D V, Hu Y F, Yang Y M, and Zhang W 2021 Chin. Phys. Lett. 38 117301
[12] Song B Q, Nguyen M C, Wang C Z, and Ho K M 2018 Phys. Rev. B 97 094105
[13] Bucci F, Sanna A, Profeta G, Continenza A, and Gross E K U 2017 Phys. Rev. B 95 014415
[14] Liu X, Liu D F, Zhao L, Guo Q, Mu Q G, Chen D Y, Shen B, Yi H M, Huang J W, He J F, Peng Y Y, Liu Y, He S L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Ren Z A, and Zhou X J 2013 Chin. Phys. Lett. 30 127402
[15] Kim T K, Pervakov K S, Evtushinsky D V, Jung S W, Poelchen G, Kummer K, Vlasenko V A, Sadakov A V, Usoltsev A S, Pudalov V M, Roditchev D, Stolyarov V S, Vyalikh D V, Borisov V, Valentí R, Ernst A, Eremeev S V, and Chulkov E V 2021 Phys. Rev. B 103 174517
[16] Zhang L F, Meng J L, Liu X J, Yao F, Meng J, and Zhang H J 2017 Phys. Rev. B 96 045114
[17] Yi X L, Xing X Z, Meng Y, Zhou N, Wang C L, Sun Y, and Shi Z X 2023 Chin. Phys. Lett. 40 027401
[18] Shao Y T, Hong W S, Li S L, Li Z, and Luo J L 2019 Chin. Phys. Lett. 36 127401
[19] Blaha P, Schwarz K, Tran F, Laskowski R, Madsen G K H, and Marks L D 2020 J. Chem. Phys. 152 074101
[20] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] He L J, Meng J L, Feng J, Zhang Z X, Liu X J, and Zhang H J 2020 J. Phys. Chem. C 124 932
[22] Chang T R, Das T, Chen P J, Neupane M, Xu S Y, Hasan M Z, Lin H, Jeng H T, and Bansil A 2015 Phys. Rev. B 91 155151
[23] Ma F J, Lu Z Y, and Xiang T 2008 Phys. Rev. B 78 224517
[24] Hu Y F, Yue C M, Yuan D W, Gao J C, Huang Z G, Fang Z, Fang C, Weng H M, Zhang W, and Physics S C 2022 Sci. Chin. Phys. Mech. & Astron. 65 297211
[25] Ortenzi L, Gretarsson H, Kasahara S, Matsuda Y, Shibauchi T, Finkelstein K D, Wu W, Julian S R, Kim Y J, Mazin I I, and Boeri L 2015 Phys. Rev. Lett. 114 047001
[26] Huang Y N, Liu D Y, Zou L J, and Pickett W E 2016 Phys. Rev. B 93 195148
[27] Huang Y N, Yu X L, Liu D Y, and Zou L J 2015 J. Appl. Phys. 117 17E113
Related articles from Frontiers Journals
[1] Xin-Zhu Yin, Hao Wang, Qiu-Hao Wang, Na Jiao, Mei-Yan Ni, Meng-Meng Zheng, Hong-Yan Lu, and Ping Zhang. Superconductivity Modulated by Carbonization and Hydrogenation in Two-Dimensional MXenes $M_{2}$N ($M$ = Mo, W)[J]. Chin. Phys. Lett., 2023, 40(9): 097405
[2] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Erratum: Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors [Chin. Phys. Lett. 39, 097401 (2022)][J]. Chin. Phys. Lett., 2023, 40(5): 097405
[3] Hongen Zhu, Tongrui Li, Fanghang Yu, Yuliang Li, Sheng Wang, Yunbo Wu, Zhanfeng Liu, Zhengming Shang, Shengtao Cui, Yi Liu, Guobin Zhang, Lidong Zhang, Zhenyu Wang, Tao Wu, Jianjun Ying, Xianhui Chen, and Zhe Sun. Electronic Instability of Kagome Metal CsV$_{3}$Sb$_{5}$ in the $2 \times 2\times 2$ Charge Density Wave State[J]. Chin. Phys. Lett., 2023, 40(4): 097405
[4] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 097405
[5] Yiding Liu, Qiang Fan, Jianhui Yang, Lili Wang, Weibin Zhang, and Gang Yao. Predicted High-Temperature Superconductivity in Rare Earth Hydride ErH$_{2}$ at Moderate Pressure[J]. Chin. Phys. Lett., 2022, 39(12): 097405
[6] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 097405
[7] Lin Feng, Chen-Chen Guo, Xue-Ying Zhang, Hai-Cheng Xuan, Wen-Hong Wang, En-Ke Liu, Guang-Heng Wu. Possible Martensitic Transformation in Heusler Alloy Pt$_{2}$MnSn from First Principles[J]. Chin. Phys. Lett., 2018, 35(3): 097405
[8] LIANG Yi, WU Xian-Xin, HU Jiang-Ping. Electronic Structure Properties in the Nematic Phases of FeSe[J]. Chin. Phys. Lett., 2015, 32(11): 097405
[9] XU Di-Fei, DU Yong-Ping, WANG Zhen, LI Yu-Peng, NIU Xiao-Hai, YAO Qi, Dudin Pavel, XU Zhu-An, WAN Xian-Gang, FENG Dong-Lai. Observation of Fermi Arcs in Non-Centrosymmetric Weyl Semi-Metal Candidate NbP[J]. Chin. Phys. Lett., 2015, 32(10): 097405
[10] WU Xian-Xin, LE Cong-Cong, YUAN Jing, FAN Heng, HU Jiang-Ping. Magnetism in Quasi-One-Dimensional A2Cr3As3 (A=K,Rb) Superconductors[J]. Chin. Phys. Lett., 2015, 32(5): 097405
[11] A. Manzar, G. Murtaza, R. Khenata, Masood Yousaf, S. Muhammad, Hayatullah. Electronic and Optic Properties of Cubic Spinel CdX2O4 (X=In, Ga, Al) through Modified Becke–Johnson Potential[J]. Chin. Phys. Lett., 2014, 31(06): 097405
[12] A. Manzar, G. Murtaza, R. Khenata, S. Muhammad, Hayatullah. Electronic and Optical Properties of Spinel GeMg2O4 and GeCd2O4[J]. Chin. Phys. Lett., 2013, 30(12): 097405
[13] Masood Yousaf, M. A. Saeed, Ahmad Radzi Mat Isa, H. A. Rahnamaye Aliabad, M. R. Sahar . An Insight into the Structural, Electronic and Transport Characteristics of XIn2S4 (X = Zn, Hg) Thiospinels using a Highly Accurate All-Electron FP-LAPW+Lo Method[J]. Chin. Phys. Lett., 2013, 30(7): 097405
[14] A. Manzar, G. Murtaza, R. Khenata, S. Muhammad, Hayatullah. Electronic Band Profile and Optical Response of Spinel MgIn2O4 through Modified Becke–Johnson Potential[J]. Chin. Phys. Lett., 2013, 30(6): 097405
[15] A. Manzar, G. Murtaza, R. Khenata, S. Muhammad, Hayatullah. Electronic Band Structure and Optical Response of Spinel SnX2O4 (X = Mg, Zn) through Modified Becke–Johnson Potential[J]. Chin. Phys. Lett., 2013, 30(4): 097405
Viewed
Full text


Abstract