Chin. Phys. Lett.  2023, Vol. 40 Issue (9): 097501    DOI: 10.1088/0256-307X/40/9/097501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Manipulating Skyrmion Motion on a Nanotrack with Varied Material Parameters and Tilted Spin Currents
Jia Luo1, Jia-Hao Guo2, Yun-He Hou2, Jun-Lin Wang3,4, Yong-Bing Xu4, Yan Zhou5*, Philip Wing Tat Pong6*, and Guo-Ping Zhao1,7*
1College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, China
2Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
3School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China
4School of Physics, Engineering and Technology, University of York, York, YO10 5DD, United Kingdom
5School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
6Department of Electrical and Computer Engineering, New Jersey Institute of Technology, NJ 07102, USA
7Center for Magnetism and Spintronics, Sichuan Normal University, Chengdu 610068, China
Cite this article:   
Jia Luo, Jia-Hao Guo, Yun-He Hou et al  2023 Chin. Phys. Lett. 40 097501
Download: PDF(1682KB)   PDF(mobile)(1709KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Magnetic skyrmions are topological quasiparticles with nanoscale size and high mobility, which have potential applications in information storage and spintronic devices. The manipulation of skyrmion's dynamics in the track is an important topic due to the skyrmion Hall effect, which can deviate the skyrmions from the preferred direction. We propose a new model based on the ferromagnetic skyrmion, where the skyrmion velocity can be well controlled by adjusting the direction of the current. Using this design, we can avoid the annihilation of the skyrmion induced by the skyrmion Hall effect, which is confirmed by our micromagnetic simulation based on Mumax$^{3}$. In the meantime, we increase the average velocity of the skyrmion by varying the intrinsic material parameters in the track, where the simulations agree well with our analytical results based on the Thiele equation. Finally, we give a phase diagram of the output of the skyrmion in the T-type track, which provides some practical ways for design of logic gates by manipulating crystalline anisotropy through the electrical control.
Received: 06 July 2023      Published: 10 September 2023
PACS:  75.50.-y (Studies of specific magnetic materials)  
  75.78.Cd (Micromagnetic simulations ?)  
  12.39.Dc (Skyrmions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/9/097501       OR      https://cpl.iphy.ac.cn/Y2023/V40/I9/097501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jia Luo
Jia-Hao Guo
Yun-He Hou
Jun-Lin Wang
Yong-Bing Xu
Yan Zhou
Philip Wing Tat Pong
and Guo-Ping Zhao
[1] Fert A, Reyren N, and Cros V 2017 Nat. Rev. Mater. 2 17031
[2] Tokura Y and Kanazawa N 2021 Chem. Rev. 121 2857
[3] Zhang X C, Zhou Y, Song M K, Park T E, Xia J, Ezawa M, Liu X, Zhao W, Zhao G P, and Woo S 2020 J. Phys.: Condens. Matter 32 143001
[4] Zhang X C, Ezawa M, and Zhou Y 2015 Sci. Rep. 5 9400
[5] Rößler K U, Bogdanov A, and Pfleiderer C 2006 Nature 442 797
[6] Weidig T 1999 Nonlinearity 12 1489
[7] Ball R D 1990 Int. J. Mod. Phys. A 5 4391
[8] Jiang W J, Chen G, Liu K, Zang J D, te Velthuis S G E, and Hoffmann A 2017 Phys. Rep. 704 1
[9] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, and Böni P 2009 Science 323 915
[10] Di K, Zhang L V, Lim S H, Ng C S, Kuok H M, Yu J, Yoon J, Qiu X, and Yang H 2015 Phys. Rev. Lett. 114 47201
[11] El H S, Bailly-Reyre A, and Diep H 2018 J. Magn. Magn. Mater. 455 32
[12] Jaiswal S, Litzius K, Lemesh I, Büttner F, Finizio S, Raabe J, Weig M, Lee K, Langer J, and Ocker B 2017 Appl. Phys. Lett. 111 22409
[13] Ryu K S, Thomas L, Yang S H, and Parkin 2013 Nat. Nanotechnol. 8 527
[14] Sergienko A I and Dagotto E 2006 Phys. Rev. B 73 94434
[15] Zhou Y F, Mansell R, Valencia S, Kronast F, and van Dijken S 2020 Phys. Rev. B 101 54433
[16] Yang H X, Liang J H, and Cui Q R 2023 Nat. Rev. Phys. 5 43
[17] Soumyanarayanan A, Raju M, Oyarce G A, Tan K A, Im M Y, Petrović A, Ho P, Khoo K, Tran M, and Gan C 2017 Nat. Mater. 16 898
[18] Raju M, Yagil A, Soumyanarayanan A, Tan K A, Almoalem A, Ma F, Auslaender O M, and Panagopoulos C 2019 Nat. Commun. 10 696
[19] Hagemeister J, Iaia D, Vedmedenko Y E, von Bergmann K, Kubetzka A, and Wiesendanger R 2016 Phys. Rev. Lett. 117 207202
[20] Li M, Lau D, de Graef M, and Sokalski V 2019 Phys. Rev. Mater. 3 64409
[21] Brock A J, Montoya A S, Im M Y, and Fullerton E E 2020 Phys. Rev. Mater. 4 104409
[22] Hrabec A, Sampaio J, Belmeguenai M, Gross I, Weil R, Chérif M S, Stashkevich A, Jacques V, Thiaville A, and Rohart S 2017 Nat. Commun. 8 15765
[23] Syamlal S K, Kalal S, Perumal P H, Kumar D, Gupta M, and Sinha J 2021 Mater. Sci. Eng. B 272 115367
[24] Ojha B, Mallick S, Sharma M, Thiaville A, Rohart S, and Bedanta S 2021 arXiv:2106.2407 [cond-mat.mtrl-sci]
[25] Wang Z W, Liang J H, and Yang H X 2023 Chin. Phys. Lett. 40 017501
[26] Allwood A D, Xiong G, Faulkner C, Atkinson D, Petit D, and Cowburn R 2005 Science 309 1688
[27] Franken H J, Herps M, Swagten J H, and Koopmans B 2014 Sci. Rep. 4 5248
[28] Luo Z C, Hrabec A, Dao P T, Sala G, Finizio S, Feng J, Mayr S, Raabe J, Gambardella P, and Heyderman J L 2020 Nature 579 214
[29] Parkin S S, Hayashi M, and Thomas L 2008 Science 320 190
[30] Papanicolaou N and Tomaras T 1991 Nucl. Phys. B 360 425
[31] Ivanov B, Stephanovich V, and Zhmudskii A 1990 J. Magn. Magn. Mater. 88 116
[32] Göbel B, Mook A, Henk J, Mertig I, and Tretiakov A O 2019 Phys. Rev. B 99 60407
[33] Shen L C, Xia J, Zhang X C, Ezawa M, Tretiakov A O, Liu X, Zhao G P, and Zhou Y 2020 Phys. Rev. Lett. 124 37202
[34] Je G S, Han H S, Kim K S, Montoya A S, Chao W, Hong I S, Fullerton E E, Lee K S, Lee K J, and Im M Y 2020 ACS Nano 14 3251
[35] Liang D, DeGrave P J, Stolt J M, Tokura Y, and Jin S 2015 Nat. Commun. 6 8217
[36] Wild J, Meier N T, Pöllath S, Kronseder M, Bauer A, Chacon A, Halder M, Schowalter M, Rosenauer A, and Zweck J 2017 Sci. Adv. 3 e1701704
[37] Wang X, Yuan H, and Wang X 2018 Commun. Phys. 1 31
[38] Wu H, Hu X, Jing K, and Wang X 2021 Commun. Phys. 4 210
[39] Liu J H, Wang Z D, Xu T, Zhou H A, Zhao L, Je S G, Im M Y, Fang L, and Jiang W J 2022 Chin. Phys. Lett. 39 017501
[40] Yu X, Kanazawa N, Zhang W, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, and Tokura Y 2012 Nat. Commun. 3 988
[41] Juge R, Je S G, de Souza D, Buda-Prejbeanu D L, Peña-Garcia J, Nath J, Miron M I, Rana G K, Aballe L, and Foerster M 2019 Phys. Rev. Appl. 12 44007
[42] Garcia-Sanchez F, Sampaio J, Reyren N, Cros V, and Kim J 2016 New J. Phys. 18 75011
[43] Guo J H, Xia J, Zhang X C, Pong P W T, Wu Y M, Chen H, Zhao W S, and Zhou Y 2020 J. Magn. Magn. Mater. 496 165912
[44] Zhang S F, Wang J B, Zheng Q, Zhu Q Y, Liu X Y, Chen S J, Jin C D, Liu Q F, Jia C L, and Xue D S 2015 New J. Phys. 17 23061
[45] Jin Z N, Song M H, Fang H N, Chen L, Chen J W, and Tao Z K 2022 Chin. Phys. Lett. 39 108502
[46] Luo S J, Song M, Li X, Zhang Y, Hong J M, Yang X F, Zou X C, Xu N, and You L 2018 Nano Lett. 18 1180
[47] Yu D X, Yang H X, Chshiev M, and Fert A 2022 Natl. Sci. Rev. 9 nwac021
[48] Kang W, Huang Y, Zheng C, Lv W, Lei N, Zhang Y, Zhang X C, Zhou Y, and Zhao W 2016 Sci. Rep. 6 23164
[49] Kang W, Zheng C, Huang Y, Zhang X C, Zhou Y, Lv W, and Zhao W 2016 IEEE Electron Device Lett. 37 924
[50] Zhang X C, Zhao G P, Fangohr H, Liu P J, Xia W, Xia J, and Morvan F 2015 Sci. Rep. 5 7643
[51] Li X X and Yang J L 2013 Phys. Chem. Chem. Phys. 15 15793
[52] Wang Z D, Guo M H, Zhou H A, Zhao L, Xu T, Tomasello R, Bai H, Dong Y Q, Je S G, and Chao W L 2020 Nat. Electron. 3 672
[53] Yang H, Wang F, Zhang H S, Guo L H, Hu L Y, Wang L F, Xue D J, and Xu X H 2020 J. Am. Chem. Soc. 142 4438
[54] Zhang X C, Zhou Y, and Ezawa M 2016 Sci. Rep. 6 24795
[55] Sampaio J, Cros V, Rohart S, Thiaville A, and Fert A 2013 Nat. Nanotechnol. 8 839
[56] Zázvorka J, Jakobs F, Heinze D, Keil N, Kromin S, Jaiswal S, Litzius K, Jakob G, Virnau P, and Pinna D 2019 Nat. Nanotechnol. 14 658
[57] Zhang H S, Qin W, Chen M X, Cui P, Zhang Z Y, and Xu X H 2019 Phys. Rev. B 99 165410
[58] Guo J H, Xia J, Zhang X C, Pong Philip W T, and Zhou Y 2021 Phys. Lett. A 392 127157
[59] Sbiaa R, Meng H, and Piramanayagam S 2011 Phys. Status Solidi RRL 5 413
[60] Zhang H S, Yang W J, Ning Y H and Xu X H 2020 Phys. Rev. B 101 205404
[61] Carcia P 1988 J. Appl. Phys. 63 5066
[62] Carcia P, Meinhaldt A, and Suna A 1985 Appl. Phys. Lett. 47 178
[63] Daalderop G H O, Kelly P J, and den Broeder F J A 1992 Phys. Rev. Lett. 68 682
[64] den Broeder F J A, Kuiper D, van de Mosselaer A P, and Hoving W 1988 Phys. Rev. Lett. 60 2769
[65] Iwasaki I S and Ouchi K 1978 IEEE Trans. Magn. 14 849
[66] Wang K L, Alzate J G, and Amiri P K 2013 J. Phys. D 46 074003
[67] Liu Y Z, Lei N, Wang C X, Zhang X C, Kang W, Zhu D Q, Zhou Y, Liu X X, Zhang Y G, and Zhao W S 2019 Phys. Rev. Appl. 11 14004
[68] Nozaki T, Shiota Y, Shiraishi M, Shinjo T, and Suzuki Y 2010 Appl. Phys. Lett. 96 022506
[69] Zhang X C, Yan Z, and Ezawa M 2016 Nat. Commun. 7 10293
[70] Shen L C, Li X G, Zhao Y L, Xia J, Zhao G P, and Yan Z 2019 Phys. Rev. Appl. 12 064033
[71] Liang X, Zhao G P, Shen L C, Xia J, Zhang X C, and Zhou Y 2019 Phys. Rev. B 100 144439
[72] Qi S F, Qiao Z H, Deng X Z, Cubuk E D, Chen H, Zhu W G, Kaxiras E, Zhang S B, Xu X H, and Zhang Z Y 2016 Phys. Rev. Lett. 117 056804
[73] Lai P, Zhao G P, Tang H, Ran N, Wu S Q, Xia J, Zhang X C, and Zhou Y 2017 Sci. Rep. 7 45330
[74] Zhang X C, Ezawa M, Xiao D, Zhao G P, Liu Y, and Zhou Y 2015 Nanotechnology 26 225701
[75] Bartels S, Ko J, and Prohl A 2008 Math. Comput. 77 773
[76] Nakatani Y, Uesaka Y, and Hayashi N 1989 Jpn. J. Appl. Phys. 28 2485
[77] Shen L C, Xia J, Zhao G P, Zhang X C, Ezawa M, Tretiakov O A, Liu X X, and Zhou Y 2019 Appl. Phys. Lett. 114 042402
[78] Yin G, Li Y, Kong L, Lake K R, Chien C L, and Zang J 2016 Phys. Rev. B 93 174403
[79] Rohart S and Thiaville A 2013 Phys. Rev. B 88 184422
[80] Zhang X C, Xia J, and Liu X X 2022 Phys. Rev. B 106 094418
[81] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, and van Waeyenberge B 2014 AIP Adv. 4 107133
[82] Mehmood N, Wang J B, Zhang C L, Zeng Z Z, Wang J N, and Liu Q F 2022 J. Magn. Magn. Mater. 545 168775
Related articles from Frontiers Journals
[1] Heming Zha, Wei Li, Gaojie Zhang, Wenjing Liu, Liwei Deng, Qi Jiang, Mao Ye, Hao Wu, Haixin Chang, and Shan Qiao. Enhanced Magnetic Interaction between Ga and Fe in Two-Dimensional van der Waals Ferromagnetic Crystal Fe$_{3}$GaTe$_{2}$[J]. Chin. Phys. Lett., 2023, 40(8): 097501
[2] Jing-Yang You, Xue-Juan Dong, Bo Gu, and Gang Su. Possible Room-Temperature Ferromagnetic Semiconductors[J]. Chin. Phys. Lett., 2023, 40(6): 097501
[3] Xiao-Yan Wang, Jun-Fa Lin, Xiang-Yu Zeng, Huan Wang, Xiao-Ping Ma, Yi-Ting Wang, Kun Han, and Tian-Long Xia. Multiple Magnetic Phase Transitions and Critical Behavior in Single-Crystal SmMn$_{2}$Ge$_{2}$[J]. Chin. Phys. Lett., 2023, 40(6): 097501
[4] Wenkai Zhu, Shihong Xie, Hailong Lin, Gaojie Zhang, Hao Wu, Tiangui Hu, Ziao Wang, Xiaomin Zhang, Jiahan Xu, Yujing Wang, Yuanhui Zheng, Faguang Yan, Jing Zhang, Lixia Zhao, Amalia Patanè, Jia Zhang, Haixin Chang, and Kaiyou Wang. Large Room-Temperature Magnetoresistance in van der Waals Ferromagnet/Semiconductor Junctions[J]. Chin. Phys. Lett., 2022, 39(12): 097501
[5] Lin Feng, Chen-Chen Guo, Xue-Ying Zhang, Hai-Cheng Xuan, Wen-Hong Wang, En-Ke Liu, Guang-Heng Wu. Possible Martensitic Transformation in Heusler Alloy Pt$_{2}$MnSn from First Principles[J]. Chin. Phys. Lett., 2018, 35(3): 097501
[6] KUMAR V., SINHA Anita, SINGH B. P., SINHA A. P., JHA V.. Refractive Index and Electronic Polarizability of Ternary Chalcopyrite Semiconductors[J]. Chin. Phys. Lett., 2015, 32(12): 097501
[7] SI Ping-Zhan, XIAO Xiao-Fei, FENG He, YU Sen-Jiang, GE Hong-Liang . Overcoming Decomposition with Order-Reversed Quenching Obtained by Flash Melting[J]. Chin. Phys. Lett., 2013, 30(7): 097501
[8] Osman Murat Ozkendir**. Chromium Substitution Effect on the Magnetic Structure of Iron Oxides[J]. Chin. Phys. Lett., 2012, 29(5): 097501
[9] ZHOU Tie-Ge,LIU Zhi-Qiang**,ZUO Xu. First-Principles Study of Doped Half-Metallic Spinels: Cu0.5Zn0.5Cr2S4, Cu0.5Cd0.5Cr2S4, Li0.5Zn0.5Cr2O4 and Li0.5Zn0.5Cr2S4[J]. Chin. Phys. Lett., 2012, 29(4): 097501
[10] LIU Chun-Ming**, XIANG Xia, ZHANG Yan, JIANG Yong, ZU Xiao-Tao . Magnetism of a Nitrogen-Implanted TiO2 Single Crystal[J]. Chin. Phys. Lett., 2011, 28(12): 097501
[11] CHEN Hai-Ying, ZHANG Yan, YANG Yun-Bo, CHEN Xue-Gang, LIU Shun-Quan, WANG Chang-Sheng, YANG Ying-Chang, YANG Jin-Bo, ** . Magnetostrictions and Magnetic Properties of Nd-Fe-B and SrFe12O19[J]. Chin. Phys. Lett., 2011, 28(7): 097501
[12] LI Yong-Feng, LIU Gui-Bin, SHI Li-Jie, LIU Bang-Gui. Fe-Vacancy-Induced Ferromagnetism in Tetragonal FeSe Thin Films[J]. Chin. Phys. Lett., 2009, 26(12): 097501
[13] ZHOU Guang-Hong, WANG Yin-Gang, QI Xian-Jin. Thermal Stability of CoFe/Cu/CoFe/IrMn Top Spin Valve[J]. Chin. Phys. Lett., 2009, 26(3): 097501
[14] XUE De-Sheng, LI Fa-Shen, FAN Xiao-Long, WEN Fu-Sheng. Bianisotropy Picture of Higher Permeability at Higher Frequencies[J]. Chin. Phys. Lett., 2008, 25(11): 097501
[15] GAO Tian, CAO Shi-Xun, ZHANG Jin-Cang, YU Li-Ming, KANG Bao-Juan, YUAN Shu-Juan,. Nano-sized Domain Wall Pinning Effects in Dilute Cu-Doped Perovskite LaMn1-xCuxO3 Manganites[J]. Chin. Phys. Lett., 2008, 25(9): 097501
Viewed
Full text


Abstract