CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Role of Lanthanide in the Electronic Properties of Rb$Ln_{2}$Fe$_{4}$As$_{4}$O$_{2}$ ($Ln$ = Sm and Ho) Superconductors |
Yi-Na Huang1*, Zhao-Feng Ye1, Da-Yong Liu2, and Hang-Qiang Qiu1 |
1Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China 2Department of Physics, School of Sciences, Nantong University, Nantong 226019, China
|
|
Cite this article: |
Yi-Na Huang, Zhao-Feng Ye, Da-Yong Liu et al 2023 Chin. Phys. Lett. 40 097405 |
|
|
Abstract We focus on the effect of ionic radius of lanthanides and the number of electrons in $4f$ orbitals on the superconducting temperature in 12442-type iron-based superconductors Rb$Ln_{2}$Fe$_{4}$As$_{4}$O$_{2}$ (Ln = Sm and Ho). Electronic properties of RbSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$ and RbHo$_{2}$Fe$_{4}$As$_{4}$O$_{2}$ with the largest differences of ionic radii and numbers of electrons in $4f$ orbital, and the largest difference of superconducting temperatures by using first-principles calculations. We predict that the ground state of Rb$Ln_{2}$Fe$_{4}$As$_{4}$O$_{2}$ is spin-density-wave-type in-plane striped antiferromagnet, and the magnetic moment around each Fe atom is about $2\mu_{\scriptscriptstyle{\rm B}}$. RbSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$ has a great influence on the energy band near the $\varGamma$ point, and a Dirac-like dispersion energy band appears. This band is mainly contributed by the $d_{z^2}$ orbital of Fe, which proves that RbSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$ has a stronger three-dimensionality. At the same time, this extra Fermi surface appears at the $\varGamma$ point, which also shows that Sm can effectively enhance the coupling strength within Fe$_{2}$As$_{2}$ bilayers. This is also confirmed by the charge density difference $\rho$(RbHo$_{2}$Fe$_{4}$As$_{4}$O$_{2}$)$\,-\rho$(RbSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$). It increases the internal coupling strength of the bilayer Fe$_{2}$As$_{2}$ layers, which in turn leads to a higher $T_{\rm c}$ of RbSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$ than RbHo$_{2}$Fe$_{4}$As$_{4}$O$_{2}$. Determining the details of their electronic structure, which may be closely related to superconductivity, is crucial to understanding the underlying mechanism. Such microscopic studies provide useful clues for our further research of other high-temperature superconductors.
|
|
Received: 21 April 2023
Published: 01 September 2023
|
|
PACS: |
74.20.Pq
|
(Electronic structure calculations)
|
|
71.15.-m
|
(Methods of electronic structure calculations)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
|
|
|
[1] | Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M, and Cao G H 2016 J. Am. Chem. Soc. 138 7856 |
[2] | Kaluarachchi U S, Taufour V, Sapkota A, Borisov V, Kong T, Meier W R, Kothapalli K, Ueland B G, Kreyssig A, Valentí R, McQueeney R J, Goldman A I, Bud'ko S L, and Canfield P C 2017 Phys. Rev. B 96 140501 |
[3] | Lee S, de la Peña G, Sun S X L, Mitrano M, Fang Y, Jang H, Lee J S, Eckberg C, Campbell D, Collini J, Paglione J, de Groot F M F, and Abbamonte P 2019 Phys. Rev. Lett. 122 147601 |
[4] | Torsello D, Piatti E, Ummarino G A, Yi X, Xing X, Shi Z, Ghigo G, and Daghero D 2022 npj Quantum Mater. 7 10 |
[5] | Wang Z C, He C Y, Tang Z T, Wu S Q, and Cao G H 2017 Sci. Chin. Mater. 60 83 |
[6] | Iimura S, Matsuishi S, and Hosono H 2016 Phys. Rev. B 94 024512 |
[7] | Wang B S, Wang Z C, Ishigaki K, Matsubayashi K, Eto T, Sun J, Cheng J G, Cao G H, and Uwatoko Y 2019 Phys. Rev. B 99 014501 |
[8] | Wu S Q, Wang Z C, He C Y, Tang Z T, Liu Y, and Cao G H 2017 Phys. Rev. Mater. 1 044804 |
[9] | Windsor Y W, Lee S E, Zahn D, Borisov V, Thonig D, Kliemt K, Ernst A, Schüßler-Langeheine C, Pontius N, Staub U, Krellner C, Vyalikh D V, Eriksson O, and Rettig L 2022 Nat. Mater. 21 514 |
[10] | Jung S G, Shin S, Jang H, Kang W N, Han J H, Mine A, Tamegai T, and Park T 2018 NPG Asia Mater. 10 156 |
[11] | Yuan D V, Hu Y F, Yang Y M, and Zhang W 2021 Chin. Phys. Lett. 38 117301 |
[12] | Song B Q, Nguyen M C, Wang C Z, and Ho K M 2018 Phys. Rev. B 97 094105 |
[13] | Bucci F, Sanna A, Profeta G, Continenza A, and Gross E K U 2017 Phys. Rev. B 95 014415 |
[14] | Liu X, Liu D F, Zhao L, Guo Q, Mu Q G, Chen D Y, Shen B, Yi H M, Huang J W, He J F, Peng Y Y, Liu Y, He S L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Ren Z A, and Zhou X J 2013 Chin. Phys. Lett. 30 127402 |
[15] | Kim T K, Pervakov K S, Evtushinsky D V, Jung S W, Poelchen G, Kummer K, Vlasenko V A, Sadakov A V, Usoltsev A S, Pudalov V M, Roditchev D, Stolyarov V S, Vyalikh D V, Borisov V, Valentí R, Ernst A, Eremeev S V, and Chulkov E V 2021 Phys. Rev. B 103 174517 |
[16] | Zhang L F, Meng J L, Liu X J, Yao F, Meng J, and Zhang H J 2017 Phys. Rev. B 96 045114 |
[17] | Yi X L, Xing X Z, Meng Y, Zhou N, Wang C L, Sun Y, and Shi Z X 2023 Chin. Phys. Lett. 40 027401 |
[18] | Shao Y T, Hong W S, Li S L, Li Z, and Luo J L 2019 Chin. Phys. Lett. 36 127401 |
[19] | Blaha P, Schwarz K, Tran F, Laskowski R, Madsen G K H, and Marks L D 2020 J. Chem. Phys. 152 074101 |
[20] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[21] | He L J, Meng J L, Feng J, Zhang Z X, Liu X J, and Zhang H J 2020 J. Phys. Chem. C 124 932 |
[22] | Chang T R, Das T, Chen P J, Neupane M, Xu S Y, Hasan M Z, Lin H, Jeng H T, and Bansil A 2015 Phys. Rev. B 91 155151 |
[23] | Ma F J, Lu Z Y, and Xiang T 2008 Phys. Rev. B 78 224517 |
[24] | Hu Y F, Yue C M, Yuan D W, Gao J C, Huang Z G, Fang Z, Fang C, Weng H M, Zhang W, and Physics S C 2022 Sci. Chin. Phys. Mech. & Astron. 65 297211 |
[25] | Ortenzi L, Gretarsson H, Kasahara S, Matsuda Y, Shibauchi T, Finkelstein K D, Wu W, Julian S R, Kim Y J, Mazin I I, and Boeri L 2015 Phys. Rev. Lett. 114 047001 |
[26] | Huang Y N, Liu D Y, Zou L J, and Pickett W E 2016 Phys. Rev. B 93 195148 |
[27] | Huang Y N, Yu X L, Liu D Y, and Zou L J 2015 J. Appl. Phys. 117 17E113 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|