CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Multiple Magnetic Phase Transitions and Critical Behavior in Single-Crystal SmMn$_{2}$Ge$_{2}$ |
Xiao-Yan Wang1,2, Jun-Fa Lin1,2, Xiang-Yu Zeng1,2, Huan Wang1,2, Xiao-Ping Ma1,2, Yi-Ting Wang1,2, Kun Han1,2, and Tian-Long Xia1,2,3,4* |
1Department of Physics, Renmin University of China, Beijing 100872, China 2Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China 3Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China 4Laboratory for Neutron Scattering, Renmin University of China, Beijing 100872, China
|
|
Cite this article: |
Xiao-Yan Wang, Jun-Fa Lin, Xiang-Yu Zeng et al 2023 Chin. Phys. Lett. 40 067503 |
|
|
Abstract Magnetic materials with noncollinear spin configurations have engendered significant interest in condensed matter physics due to their intriguing physical properties. We direct our attention towards the magnetic properties and critical behavior of single-crystal SmMn$_{2}$Ge$_{2}$, an itinerant magnet with numerous temperature-dependent magnetic phase transitions. Notably, SmMn$_{2}$Ge$_{2}$ displays significant magnetic anisotropy with easy magnetization direction switching from the $c$ axis to the $ab$ plane as temperature decreases. The critical behavior of the ferromagnetic transition occurring above room temperature is thoroughly examined. Reliable and self-consistent critical exponents, including $\beta = 0.292(2)$, $\gamma=0.924(8)$, and $\delta = 4.164(6)$, along with the Curie temperature $T_{\rm c}=347$ K, are extracted through various methods, which provide evidence for the coexistence of multiple magnetic interactions in SmMn$_{2}$Ge$_{2}$. Further analysis reveals that the magnetic interaction of SmMn$_{2}$Ge$_{2}$ is a long-range type with the interaction distance decaying as $J(r)\sim r^{-4.35}$.
|
|
Received: 16 April 2023
Published: 01 June 2023
|
|
PACS: |
75.40.Cx
|
(Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))
|
|
75.50.-y
|
(Studies of specific magnetic materials)
|
|
81.10.Fq
|
(Growth from melts; zone melting and refining)
|
|
|
|
|
[1] | Eyring L, Gschneidner K A, and Lander G 2002 Handbook Physics Chemistry Rare Earths (Amsterdam: Elsevier) vol 32 |
[2] | Baranov N V, Gerasimov E G, and Mushnikov N V 2011 Phys. Met. Metallogr. 112 711 |
[3] | van Dover R B, Gyorgy E M, Cava R J, Krajewski J J, Felder R J, and Peck W F 1993 Phys. Rev. B 47 6134 |
[4] | Nowik I, Levi Y, Felner I, and Bauminger E 1995 J. Magn. Magn. Mater. 147 373 |
[5] | Szytuła A and Leciejewicz J 1989 Handbook Physics Chemistry Rare Earths (Amsterdam: Elsevier) vol 12 p 133 |
[6] | Kolmakova N, Sidorenko A, and Levitin R 2002 Low Temp. Phys. 28 653 |
[7] | Szytuła A and Szott I 1981 Solid State Commun. 40 199 |
[8] | Gong G S, Xu L M, Bai Y M, Wang Y Q, Yuan S L, Liu Y, and Tian Z M 2021 Phys. Rev. Mater. 5 034405 |
[9] | Xu L M, Bai Y M, Gong G S, Song F Y, Li Z H, Han Y Y, Ling L S, and Tian Z M 2022 Phys. Rev. B 105 075108 |
[10] | Zheng X M, Zhao X W, Qi J et al. 2021 Appl. Phys. Lett. 118 072402 |
[11] | Hou Z P, Li L W, Liu C, Gao X S, Ma Z P, Zhou G F, Peng Y, Yan M, Zhang X X, and Liu J M 2021 Mater. Today Phys. 17 100341 |
[12] | Wang S B, Zeng Q W, Liu D M et al. 2020 ACS Appl. Mater. & Interfaces 12 24125 |
[13] | Szytula A 1992 J. Alloys Compd. 178 1 |
[14] | Fujii H, Okamoto T, Shigeoka T, and Iwata N 1985 Solid State Commun. 53 715 |
[15] | Duraj M, Duraj R, Szytuła A, and Tomkowicz Z 1988 J. Magn. Magn. Mater. 73 240 |
[16] | Tomka G J, Ritter C, Riedi P C, Kapusta C, and Kocemba W 1998 Phys. Rev. B 58 6330 |
[17] | Han Z D, Wu H P, Wang D H, Hua Z H, Zhang C L, Gu B X, and Du Y W 2006 J. Appl. Phys. 100 043908 |
[18] | Lord J S, Riedi P C, Tomka G J, Kapusta C, and Buschow K H J 1996 Phys. Rev. B 53 283 |
[19] | Lord J S, Riedi P C, Kapusta C, and Buschow K H J 1995 Physica B 206–207 383 |
[20] | Aharoni A 1998 J. Appl. Phys. 83 3432 |
[21] | Rossi D, Marazza R, Mazzone D, and Ferro R 1978 J. Less-Common Met. 59 79 |
[22] | Tomka G, Ritter C, Riedi P, Adroja D, Lord J, Kapusta C, and Zukrowski J 2000 Physica B 291 317 |
[23] | Zhao J, Liu W, Rahman A, Meng F, Ling L, Xi C, Tong W, Bai Y, Tian Z, Zhong Y et al. 2022 New J. Phys. 24 013010 |
[24] | Dincer I and Elerman Y 2013 J. Magn. Magn. Mater. 326 50 |
[25] | Kumar P, Singh N K, Suresh K, Nigam A, and Malik S 2007 J. Phys.: Condens. Matter 19 386210 |
[26] | Ali N and Saha S 1995 J. Alloys Compd. 227 49 |
[27] | Tan A Y, Labracherie V, Kunchur N, Wolter A U, Cornejo J, Dufouleur J, Büchner B, Isaeva A, and Giraud R 2020 Phys. Rev. Lett. 124 197201 |
[28] | Wang X Y, Xu S, Wang H, Lin J F, Zeng X Y, Xa X P, Gong J, Wang Y T, Han K, and Xia T L 2023 Phys. Rev. B 107 144402 |
[29] | Cao Y, Huang Z, Yin Y, Xie H, Liu B, Wang W, Zhu C, Mandrus D, Wang L, and Huang W 2020 Mater. Today Adv. 7 100080 |
[30] | Kishine J I and Ovchinnikov A J 2015 Solid State Phys. 66 1 |
[31] | Arrott A 1957 Phys. Rev. 108 1394 |
[32] | Banerjee B K 1964 Phys. Lett. 12 16 |
[33] | Fisher M E 1967 Rep. Prog. Phys. 30 615 |
[34] | Arrott A and Noakes J E 1967 Phys. Rev. Lett. 19 786 |
[35] | Kaul S 1985 J. Magn. Magn. Mater. 53 5 |
[36] | Kouvel J S and Fisher M E 1964 Phys. Rev. 136 A1626 |
[37] | Aharoni A et al. 2000 Introduction to the Theory of Ferromagnetism (Oxford: Clarendon Press) vol 109 |
[38] | Widom B 1965 J. Chem. Phys. 43 3898 |
[39] | Widom B 1964 J. Chem. Phys. 41 1633 |
[40] | Domb C 2000 Phase Transitions and Critical Phenomena (Amstertam: Elsevier) |
[41] | Phan M H, Franco V, Bingham N S, Srikanth H, Hur N H, and Yu S Y 2010 J. Alloys Compd. 508 238 |
[42] | Wang X X, Wang W Q, Hutchison W D, Wang C W, Hao H Y, Su F, Xue Y F, Debnath J C, Campbell S J, Cheng Z X et al. 2022 J. Alloys Compd. 909 164784 |
[43] | Din M M F, Wang J L, Cheng Z X, Dou S X, Kennedy S J, Avdeev M, and Campbell S J 2015 Sci. Rep. 5 11288 |
[44] | Das B, Kumar M S, Kar D N, Palit M, and Gopalan R 2022 IEEE Trans. Magn. 58 1 |
[45] | Song M, Zhao J, Liu C X, He M, Wang Y H, Han Y Y, Ling L S, Cao L, Zhang L, Qu Z et al. 2022 Appl. Phys. Lett. 120 092402 |
[46] | Fisher M E, Ma S K, and Nickel B G 1972 Phys. Rev. Lett. 29 917 |
[47] | Fischer S F, Kaul S N, and Kronmüller H 2002 Phys. Rev. B 65 064443 |
[48] | Zhang L, Menzel D, Jin C M, Du H F, Ge M, Zhang C J, Pi L, Tian M L, and Zhang Y H 2015 Phys. Rev. B 91 024403 |
[49] | Hou Q Y, Song M, Xu X T et al. 2023 Chin. Phys. B 32 087501 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|