CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Characteristics and Applications of Current-Driven Magnetic Skyrmion Strings |
Zhaonian Jin1, Minhang Song2, Henan Fang2, Lin Chen2, Jiangwei Chen2, and Zhikuo Tao2* |
1Bell Honors School, Nanjing University of Posts and Telecommunications, Nanjing 210003, China 2College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
|
|
Cite this article: |
Zhaonian Jin, Minhang Song, Henan Fang et al 2022 Chin. Phys. Lett. 39 108502 |
|
|
Abstract We investigate the current-driven characteristics and applications of magnetic skyrmion strings by micromagnetic simulations. Under the spin-polarized driving current, the skyrmion string presents different moving trajectories in different layers due to the skyrmion Hall effect. Moreover, a series of skyrmion bobbers can be generated with a notch defect placed in the surface and the skyrmion bobbers will follow the skyrmion string. By varying the current density, the bobbers' characteristics such as number and velocity can be manipulated, which inspires us to propose a skyrmion string-based diode. In addition, an AND logic gate and an OR logic gate in the identical scheme based on the skyrmion string are proposed. AND logic and OR logic behaviors can be realized by varying the driving current densities. Our findings will contribute to further research of magnetic skyrmion strings for data storage, processing, and energy-efficient computing.
|
|
Received: 17 August 2022
Published: 28 September 2022
|
|
PACS: |
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
85.70.Ay
|
(Magnetic device characterization, design, and modeling)
|
|
85.30.Kk
|
(Junction diodes)
|
|
|
|
|
[1] | Mühlbauer S, Binz B, Jonietz F, Mühlbauerb S, Binz B, Jonietzc F, Pfleiderera C, Rosch A, Neubauer A, Georgii R, and Böni P 2009 Science 323 915 |
[2] | Kang W, Huang Y, Zhang X, Zhou Y, and Zhao W S 2016 Proc. IEEE 104 2040 |
[3] | Fert A, Reyren N, and Cros V 2017 Nat. Rev. Mater. 2 17031 |
[4] | Göbel B, Mertig I, and Tretiakov O A 2021 Phys. Rep. 895 1 |
[5] | Yu D X, Yang H X, Chshiev M, and Fert A 2022 Natl. Sci. Rev. 9 nwac021 |
[6] | Luo S J, Song M, Li X, Zhang Y, Hong J M, Yang X F, Zou X C, Xu N, and You L 2018 Nano Lett. 18 1180 |
[7] | Yan Z R, Liu Y Z, Guang Y, Yue K, Feng J F, Lake R K, Yu G Q, and Han X F 2021 Phys. Rev. Appl. 15 064004 |
[8] | Shen L C, Xia J, Zhang X C, Ezawa M, Tretiakov O A, Liu X X, Zhao G P, and Zhou Y 2020 Phys. Rev. Lett. 124 037202 |
[9] | Shu Y, Li Q R, Xia J, Lai P, Hou Z P, Zhao Y H, Zhang D G, Zhou Y, Liu X X, and Zhao G P 2022 Appl. Phys. Lett. 121 042402 |
[10] | Feng Y H, Zhang X, Zhao G P, and Xiang G 2022 IEEE Trans. Electron Devices 69 1293 |
[11] | Zhao L, Liang X, Xia J, Zhao G P, and Zhou Y 2020 Nanoscale 12 9507 |
[12] | Wang J L, Xia J, Zhang X C, Zheng X Y, Li G Q, Chen L, Zhou Y, Wu J, Yin H H, Chantrell R, and Xu Y B 2020 Appl. Phys. Lett. 117 202401 |
[13] | Song L L, Yang H H, Liu B, Meng H, Cao Y S, and Yan P 2021 J. Magn. Magn. Mater. 532 167975 |
[14] | Kharkov Y A, Sushkov O P, and Mostovoy M 2017 Phys. Rev. Lett. 119 207201 |
[15] | Göbel B, Mook A, Henk J, Mertig I, and Tretiakov O A 2019 Phys. Rev. B 99 060407(R) |
[16] | Nayak A K, Kumar V, Ma T P, Werner P, Pippel E, Sahoo R, Damay F, Rößler U K, Felser C, and Stuart S P P 2017 Nature 548 561 |
[17] | Woo S, Song K, Zhang X C, Zhou Y, Ezawa M, Liu X X, Finizio S, Raabe J, Lee N J, Kim S, Park S Y, Kim Y, Kim J Y, Lee D, Lee O, Choi J W, Min B C, Koo H C, and Chang J 2018 Nat. Commun. 9 959 |
[18] | Kim S, Lee K, and Tserkovnyak Y 2017 Phys. Rev. B 95 140404 |
[19] | Milde P, Köhler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Mühlbauer S, Pfleiderer C, Buhrandt S, Schütte C, and Rosch A 2013 Science 340 1076 |
[20] | Birch M T, Cortés-Ortuño D, Turnbull L A, Wilson M N, Groß F, Träger N, Laurenson A, Bukin N, Moody S H, Weigand M, Schütz G, Popescu H, Fan R, Steadman P, Verezhak J A T, Balakrishnan G, Loudon J C, Twitchett-Harrison A C, Hovorka O, Fangohr H, Ogrin F Y, Gräfe J, and Hatton P D 2020 Nat. Commun. 11 1726 |
[21] | Wolf D, Schneider S, Rößler U K, Kovács A, Schmidt M, Dunin-Borkowski R E, Büchner B, Rellinghaus B, and Lubk A 2022 Nat. Nanotechnol. 17 250 |
[22] | Seki S, Garst M, Waizner J, Takagi R, Khanh N D, Okamura Y, Kondou K, Kagawa F, Otani Y, and Tokura Y 2020 Nat. Commun. 11 256 |
[23] | Birch M T, Cortés-Ortuño D, Litzius K, Wintz S, Schulz F, Weigand M, Štefančič A, Mayoh D A, Balakrishnan G, Hatton P D, and Schütz G 2022 Nat. Commun. 13 3630 |
[24] | Rybakov F N, Borisov A B, Blügel S, and Kiselev N S 2015 Phys. Rev. Lett. 115 117201 |
[25] | Zheng F S, Rybakov F N, Borisov A B, Song D S, Wang S, Li Z, Du H F, Kiselev N S, Caron J, Kovács A, Tian M L, Zhang Y H, Blügel S, and Dunin-Borkowski R E 2018 Nat. Nanotechnol. 13 451 |
[26] | Zhu J, Wu Y D, Hu Q Y, Kong L Y, Tang J, Tian M L, and Du H F 2021 Sci. Chin. Phys. Mech. & Astron. 64 227511 |
[27] | Liu Y Z, Lake R K, and Zang J D 2018 Phys. Rev. B 98 174437 |
[28] | Beg M, Lang M, and Fangohr H 2022 IEEE Trans. Magn. 58 0101206 |
[29] | Li Z and Zhang S 2004 Phys. Rev. B 70 024417 |
[30] | Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1 |
[31] | Moon K W, Kim D H, Je S G, Chun B S, Kim W, Qiu Z Q, Choe S B, and Hwang C 2016 Sci. Rep. 6 20360 |
[32] | Tejo F, Velozo F, Elías R G, and Escrig J 2020 Sci. Rep. 10 16517 |
[33] | Yu G L, Xu X F, Qiu Y, Yang H, Zhu M M, and Zhou H M 2021 Appl. Phys. Lett. 118 142403 |
[34] | Guo J H, Xia J, Zhang X, Philip W T, and Zhou Y 2021 Phys. Lett. A 392 127157 |
[35] | Thiele A A 1973 Phys. Rev. Lett. 30 230 |
[36] | Papanicolaou N and Tomaras T N 1991 Nucl. Phys. B 360 425 |
[37] | Dai Y Y, Wang H, Tao P, Yang T, Ren W J, and Zhang Z D 2013 Phys. Rev. B 88 054403 |
[38] | Wang W W, Beg M, Zhang B, Kuch W, and Fangohr H 2015 Phys. Rev. B 92 020403(R) |
[39] | Yu D X, Sui C W, Schulz D, Berakdar J, and Jia C L 2021 Phys. Rev. Appl. 16 034032 |
[40] | Sampaio J, Cros V, Rohart S, Thiaville A, and Fert A 2013 Nat. Nanotechnol. 8 839 |
[41] | Chauwin M, Hu X, Garcia-Sanchez F, Betrabet N, Paler A, Moutafis C, and Friedman J S 2019 Phys. Rev. Appl. 12 064053 |
[42] | Cheghabouri A M, Katmis F, and Onbasli M C 2022 Phys. Rev. B 105 054411 |
[43] | SPM Group 2002 Implementation of Temperature in Micromagnetic Simulations (Bristol: Institute of Applied Physics) http://www.nanoscience.de/group_r/stm-spstm/projects/temperature/theory.shtml |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|