Chin. Phys. Lett.  2022, Vol. 39 Issue (10): 108502    DOI: 10.1088/0256-307X/39/10/108502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Characteristics and Applications of Current-Driven Magnetic Skyrmion Strings
Zhaonian Jin1, Minhang Song2, Henan Fang2, Lin Chen2, Jiangwei Chen2, and Zhikuo Tao2*
1Bell Honors School, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Cite this article:   
Zhaonian Jin, Minhang Song, Henan Fang et al  2022 Chin. Phys. Lett. 39 108502
Download: PDF(8367KB)   PDF(mobile)(8610KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the current-driven characteristics and applications of magnetic skyrmion strings by micromagnetic simulations. Under the spin-polarized driving current, the skyrmion string presents different moving trajectories in different layers due to the skyrmion Hall effect. Moreover, a series of skyrmion bobbers can be generated with a notch defect placed in the surface and the skyrmion bobbers will follow the skyrmion string. By varying the current density, the bobbers' characteristics such as number and velocity can be manipulated, which inspires us to propose a skyrmion string-based diode. In addition, an AND logic gate and an OR logic gate in the identical scheme based on the skyrmion string are proposed. AND logic and OR logic behaviors can be realized by varying the driving current densities. Our findings will contribute to further research of magnetic skyrmion strings for data storage, processing, and energy-efficient computing.
Received: 17 August 2022      Published: 28 September 2022
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  85.70.Ay (Magnetic device characterization, design, and modeling)  
  85.30.Kk (Junction diodes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/10/108502       OR      https://cpl.iphy.ac.cn/Y2022/V39/I10/108502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhaonian Jin
Minhang Song
Henan Fang
Lin Chen
Jiangwei Chen
and Zhikuo Tao
[1] Mühlbauer S, Binz B, Jonietz F, Mühlbauerb S, Binz B, Jonietzc F, Pfleiderera C, Rosch A, Neubauer A, Georgii R, and Böni P 2009 Science 323 915
[2] Kang W, Huang Y, Zhang X, Zhou Y, and Zhao W S 2016 Proc. IEEE 104 2040
[3] Fert A, Reyren N, and Cros V 2017 Nat. Rev. Mater. 2 17031
[4] Göbel B, Mertig I, and Tretiakov O A 2021 Phys. Rep. 895 1
[5] Yu D X, Yang H X, Chshiev M, and Fert A 2022 Natl. Sci. Rev. 9 nwac021
[6] Luo S J, Song M, Li X, Zhang Y, Hong J M, Yang X F, Zou X C, Xu N, and You L 2018 Nano Lett. 18 1180
[7] Yan Z R, Liu Y Z, Guang Y, Yue K, Feng J F, Lake R K, Yu G Q, and Han X F 2021 Phys. Rev. Appl. 15 064004
[8] Shen L C, Xia J, Zhang X C, Ezawa M, Tretiakov O A, Liu X X, Zhao G P, and Zhou Y 2020 Phys. Rev. Lett. 124 037202
[9] Shu Y, Li Q R, Xia J, Lai P, Hou Z P, Zhao Y H, Zhang D G, Zhou Y, Liu X X, and Zhao G P 2022 Appl. Phys. Lett. 121 042402
[10] Feng Y H, Zhang X, Zhao G P, and Xiang G 2022 IEEE Trans. Electron Devices 69 1293
[11] Zhao L, Liang X, Xia J, Zhao G P, and Zhou Y 2020 Nanoscale 12 9507
[12] Wang J L, Xia J, Zhang X C, Zheng X Y, Li G Q, Chen L, Zhou Y, Wu J, Yin H H, Chantrell R, and Xu Y B 2020 Appl. Phys. Lett. 117 202401
[13] Song L L, Yang H H, Liu B, Meng H, Cao Y S, and Yan P 2021 J. Magn. Magn. Mater. 532 167975
[14] Kharkov Y A, Sushkov O P, and Mostovoy M 2017 Phys. Rev. Lett. 119 207201
[15] Göbel B, Mook A, Henk J, Mertig I, and Tretiakov O A 2019 Phys. Rev. B 99 060407(R)
[16] Nayak A K, Kumar V, Ma T P, Werner P, Pippel E, Sahoo R, Damay F, Rößler U K, Felser C, and Stuart S P P 2017 Nature 548 561
[17] Woo S, Song K, Zhang X C, Zhou Y, Ezawa M, Liu X X, Finizio S, Raabe J, Lee N J, Kim S, Park S Y, Kim Y, Kim J Y, Lee D, Lee O, Choi J W, Min B C, Koo H C, and Chang J 2018 Nat. Commun. 9 959
[18] Kim S, Lee K, and Tserkovnyak Y 2017 Phys. Rev. B 95 140404
[19] Milde P, Köhler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Mühlbauer S, Pfleiderer C, Buhrandt S, Schütte C, and Rosch A 2013 Science 340 1076
[20] Birch M T, Cortés-Ortuño D, Turnbull L A, Wilson M N, Groß F, Träger N, Laurenson A, Bukin N, Moody S H, Weigand M, Schütz G, Popescu H, Fan R, Steadman P, Verezhak J A T, Balakrishnan G, Loudon J C, Twitchett-Harrison A C, Hovorka O, Fangohr H, Ogrin F Y, Gräfe J, and Hatton P D 2020 Nat. Commun. 11 1726
[21] Wolf D, Schneider S, Rößler U K, Kovács A, Schmidt M, Dunin-Borkowski R E, Büchner B, Rellinghaus B, and Lubk A 2022 Nat. Nanotechnol. 17 250
[22] Seki S, Garst M, Waizner J, Takagi R, Khanh N D, Okamura Y, Kondou K, Kagawa F, Otani Y, and Tokura Y 2020 Nat. Commun. 11 256
[23] Birch M T, Cortés-Ortuño D, Litzius K, Wintz S, Schulz F, Weigand M, Štefančič A, Mayoh D A, Balakrishnan G, Hatton P D, and Schütz G 2022 Nat. Commun. 13 3630
[24] Rybakov F N, Borisov A B, Blügel S, and Kiselev N S 2015 Phys. Rev. Lett. 115 117201
[25] Zheng F S, Rybakov F N, Borisov A B, Song D S, Wang S, Li Z, Du H F, Kiselev N S, Caron J, Kovács A, Tian M L, Zhang Y H, Blügel S, and Dunin-Borkowski R E 2018 Nat. Nanotechnol. 13 451
[26] Zhu J, Wu Y D, Hu Q Y, Kong L Y, Tang J, Tian M L, and Du H F 2021 Sci. Chin. Phys. Mech. & Astron. 64 227511
[27] Liu Y Z, Lake R K, and Zang J D 2018 Phys. Rev. B 98 174437
[28] Beg M, Lang M, and Fangohr H 2022 IEEE Trans. Magn. 58 0101206
[29] Li Z and Zhang S 2004 Phys. Rev. B 70 024417
[30] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
[31] Moon K W, Kim D H, Je S G, Chun B S, Kim W, Qiu Z Q, Choe S B, and Hwang C 2016 Sci. Rep. 6 20360
[32] Tejo F, Velozo F, Elías R G, and Escrig J 2020 Sci. Rep. 10 16517
[33] Yu G L, Xu X F, Qiu Y, Yang H, Zhu M M, and Zhou H M 2021 Appl. Phys. Lett. 118 142403
[34] Guo J H, Xia J, Zhang X, Philip W T, and Zhou Y 2021 Phys. Lett. A 392 127157
[35] Thiele A A 1973 Phys. Rev. Lett. 30 230
[36] Papanicolaou N and Tomaras T N 1991 Nucl. Phys. B 360 425
[37] Dai Y Y, Wang H, Tao P, Yang T, Ren W J, and Zhang Z D 2013 Phys. Rev. B 88 054403
[38] Wang W W, Beg M, Zhang B, Kuch W, and Fangohr H 2015 Phys. Rev. B 92 020403(R)
[39] Yu D X, Sui C W, Schulz D, Berakdar J, and Jia C L 2021 Phys. Rev. Appl. 16 034032
[40] Sampaio J, Cros V, Rohart S, Thiaville A, and Fert A 2013 Nat. Nanotechnol. 8 839
[41] Chauwin M, Hu X, Garcia-Sanchez F, Betrabet N, Paler A, Moutafis C, and Friedman J S 2019 Phys. Rev. Appl. 12 064053
[42] Cheghabouri A M, Katmis F, and Onbasli M C 2022 Phys. Rev. B 105 054411
[43]SPM Group 2002 Implementation of Temperature in Micromagnetic Simulations (Bristol: Institute of Applied Physics) http://www.nanoscience.de/group_r/stm-spstm/projects/temperature/theory.shtml
Related articles from Frontiers Journals
[1] Lin Huang, Yongjian Zhou, Tingwen Guo, Feng Pan, and Cheng Song. Tunable Spin Hall Magnetoresistance in All-Antiferromagnetic Heterostructures[J]. Chin. Phys. Lett., 2022, 39(4): 108502
[2] Xiufeng Han, Yu Zhang, Yizhan Wang, Li Huang, Qinli Ma, Houfang Liu, Caihua Wan, Jiafeng Feng, Lin Yin, Guoqiang Yu, Tian Yu, and Yu Yan. High-Sensitivity Tunnel Magnetoresistance Sensors Based on Double Indirect and Direct Exchange Coupling Effect[J]. Chin. Phys. Lett., 2021, 38(12): 108502
[3] Qian Ye, Yu-Hao Shen, and Chun-Gang Duan. Ferroelectric Controlled Spin Texture in Two-Dimensional NbOI$_{2}$ Monolayer[J]. Chin. Phys. Lett., 2021, 38(8): 108502
[4] Yu Suo, Hao Yang, and Jiyong Fu. Distinct Three-Level Spin–Orbit Control Associated with Electrically Controlled Band Swapping[J]. Chin. Phys. Lett., 2020, 37(11): 108502
[5] Yingjie Zhang, Pengfei Liu, Hongyi Sun, Shixuan Zhao, Hu Xu, and Qihang Liu. Symmetry-Assisted Protection and Compensation of Hidden Spin Polarization in Centrosymmetric Systems[J]. Chin. Phys. Lett., 2020, 37(8): 108502
[6] Ya-Bo Chen, Xiao-Kuo Yang, Tao Yan, Bo Wei, Huan-Qing Cui, Cheng Li, Jia-Hao Liu, Ming-Xu Song, and Li Cai. Voltage-Driven Adaptive Spintronic Neuron for Energy-Efficient Neuromorphic Computing[J]. Chin. Phys. Lett., 2020, 37(7): 108502
[7] Si-Wei Mao, Jun Lu, Long Yang, Xue-Zhong Ruan, Hai-Long Wang, Da-Hai Wei, Yong-Bing Xu, Jian-Hua Zhao. Ultrafast Magnetization Precession in Perpendicularly Magnetized $L1_{0}$-MnAl Thin Films with Co$_{2}$MnSi Buffer Layers[J]. Chin. Phys. Lett., 2020, 37(5): 108502
[8] He-Nan Fang, Yuan-Yuan Zhong, Ming-Wen Xiao, Xuan Zang, Zhi-Kuo Tao. Effect of Lattice Distortion on the Magnetic Tunnel Junctions Consisting of Periodic Grating Barrier and Half-Metallic Electrodes[J]. Chin. Phys. Lett., 2020, 37(3): 108502
[9] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 108502
[10] Zheng-Wei Xie, Ling Li. Spin-Polarization in Quasi-Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2017, 34(5): 108502
[11] Yuan-Yuan Guo, Fei-Fei Zhao, Hai-Bin Xue, Zhe-Jie Liu. Zero-Magnetic-Field Oscillation of Spin Transfer Nano-Oscillator with a Second-Order-Perpendicular-Anisotropy Free Layer[J]. Chin. Phys. Lett., 2016, 33(03): 108502
[12] NIU Peng-Bin, SHI Yun-Long, SUN Zhu, NIE Yi-Hang, LUO Hong-Gang. Phonon-Assisted Spin Current in Single Molecular Magnet Junctions[J]. Chin. Phys. Lett., 2015, 32(11): 108502
[13] REN Jun-Feng, YUAN Xiao-Bo, HU Gui-Chao. Spin Polarization Properties of Na Doped Meridianal Tris(8-Hydroxyquinoline) Aluminum Studied by First Principles Calculations[J]. Chin. Phys. Lett., 2014, 31(04): 108502
[14] XIA Yu-Qian, SUN Lei, XU Hao, HAN Jing-Wen, ZHANG Yi-Bo, WANG Yi, ZHANG Sheng-Dong. Magnetic Properties of Co-Doped TiO2 Films Grown on TiN Buffered Silicon Substrates[J]. Chin. Phys. Lett., 2014, 31(2): 108502
[15] WANG Qi, ZHU Xiao-Feng, YUAN Xiao-Wen, CHEN Chang-Qing, LUO Xiang-Dong, ZHANG Bo. Sub-Wavelength Near-Field Metal Detection using an On-Chip Spintronic Technique[J]. Chin. Phys. Lett., 2013, 30(12): 108502
Viewed
Full text


Abstract