CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Enhanced Anomalous Hall Effect of Pt on an Antiferromagnetic Insulator with Fully Compensated Surface |
Yu Bai1,3†, Zhe Wang3†, Na Lei6†, Wisal Muhammad1,3, Lifeng Xiang1,3, Qiang Li1,3, Huilin Lai1,3, Yinyan Zhu1,2,4, Wenbing Wang1,2,4, Hangwen Guo1,2,4, Lifeng Yin1,2,3,4,5,8*, Ruqian Wu7*, and Jian Shen1,2,3,4,5,8* |
1State Key Laboratory of Surface Physics and Institute for Nanoelectronics Devices and Quantum Computing, Fudan University, Shanghai 200433, China 2Shanghai Qi Zhi Institute, Shanghai 200232, China 3Department of Physics, Fudan University, Shanghai 200433, China 4Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China 5Shanghai Research Center for Quantum Sciences, Shanghai 201315, China 6Fert Beijing Institute, BDBC, School of Electronic and Information Engineering, Beihang University, Beijing 100191, China 7Department of Physics and Astronomy, University of California, Irvine, California 92697, USA 8Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
|
|
Cite this article: |
Yu Bai, Zhe Wang, Na Lei et al 2022 Chin. Phys. Lett. 39 108501 |
|
|
Abstract We report a significantly enhanced anomalous Hall effect (AHE) of Pt on antiferromagnetic insulator thin film (3-unit-cell La$_{0.7}$Sr$_{0.3}$MnO$_{3}$, abbreviated as LSMO), which is one order of magnitude larger than that of Pt on other ferromagnetic (e.g. Y$_{3}$Fe$_{5}$O$_{12}$) and antiferromagnetic (e.g. Cr$_{2}$O$_{3}$) insulator thin films. Our experiments demonstrate that the antiferromagnetic La$_{0.7}$Sr$_{0.3}$MnO$_{3}$ with fully compensated surface suppresses the positive anomalous Hall resistivity induced by the magnetic proximity effect and facilitates the negative anomalous Hall resistivity induced by the spin Hall effect. By changing the substrate's temperature during Pt deposition, we observed that the diffusion of Mn atoms into Pt layer can further enhance the AHE. The anomalous Hall resistivity increases with increasing temperature and persists even well above the Neel temperature ($T_{\rm N}$) of LSMO. The Monte Carlo simulations manifest that the unusual rise of anomalous Hall resistivity above $T_{\rm N}$ originates from the thermal induced magnetization in the antiferromagnetic insulator.
|
|
Received: 01 August 2022
Editors' Suggestion
Published: 23 September 2022
|
|
PACS: |
73.50.Jt
|
(Galvanomagnetic and other magnetotransport effects)
|
|
72.15.Eb
|
(Electrical and thermal conduction in crystalline metals and alloys)
|
|
72.15.Gd
|
(Galvanomagnetic and other magnetotransport effects)
|
|
|
|
|
[1] | Karplus R and Luttinger J M 1954 Phys. Rev. 95 1154 |
[2] | Smit J 1958 Physica 24 39 |
[3] | Berger L 1970 Phys. Rev. B 2 4559 |
[4] | Nagaosa N, Sinova J, Onoda S, MacDonald A H, and Ong N P 2010 Rev. Mod. Phys. 82 1539 |
[5] | Vavra W, Lee C H, Lamelas F J, He H, Clarke R, and Uher C 1990 Phys. Rev. B 42 4889 |
[6] | Keskin V, Schmalhorst B A J, Reiss G, Zhang H, Weischenberg J, and Mokrousov Y 2013 Appl. Phys. Lett. 102 022416 |
[7] | Shaya O, Karpovski M, and Gerber A 2007 J. Appl. Phys. 102 043910 |
[8] | Rosenblatt D, Karpovski M, and Gerber A 2010 Appl. Phys. Lett. 96 022512 |
[9] | Guo Z B, Mi W B, Aboljadayel R O, Zhang B, Zhang Q, Barba P G, Manchon A, and Zhang X X 2012 Phys. Rev. B 86 104433 |
[10] | Kou X L, Schmalhorst J M, Keskin V, and Reiss G 2012 J. Appl. Phys. 112 093915 |
[11] | Tsui F, Chen B X, Barlett D, Clarke R, and Uher C 1994 Phys. Rev. Lett. 72 740 |
[12] | Canedy C L, Li X W, and Xiao G 1997 J. Appl. Phys. 81 5367 |
[13] | Christides C and Speliotis T 2005 J. Appl. Phys. 97 013901 |
[14] | Moritz J, Rodmacq B, Auffret S, and Dieny B 2008 J. Phys. D 41 135001 |
[15] | Zhao J, Wang Y J, Han X F, Zhang S, and Ma X H 2010 Phys. Rev. B 81 172404 |
[16] | Xu W J, Zhang B, Liu Z X, Wang Z, Li W, Wu Z B, Yu R H, and Zhang X X 2010 Europhys. Lett. 90 27004 |
[17] | Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprägs S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B, and Saitoh E 2013 Phys. Rev. Lett. 110 206601 |
[18] | Huang S Y, Fan X, Qu D, Chen Y P, Wang W G, Wu J, Chen T Y, Xiao J Q, and Chien C L 2012 Phys. Rev. Lett. 109 107204 |
[19] | Zhou X, Ma L, Shi Z, Fan W J, Zheng J G, Evans R F L, and Zhou S M 2015 Phys. Rev. B 92 060402(R) |
[20] | Liang X, Shi G Y, Deng L J, Huang F, Qin J, Tang T T, Wang C T, Peng B, Song C, and Bi L 2018 Phys. Rev. Appl. 10 024051 |
[21] | Ma L, Fu H R, Tang M, Qiu X P, Shi Z, You C Y, Tian N, and Zheng J G 2020 Appl. Phys. Lett. 117 122405 |
[22] | Ding S L, Liang Z Y, Yun C, Wu R, Xue M Z, Lin Z C, Ross A, Becker S, Yang W Y, Ma X B, Chen D F, Sun K, Jakob G, Kläui M, and Yang J B 2021 Phys. Rev. B 104 224410 |
[23] | Cheng Y, Yu S S, Zhu M L, Hwang J, and Yang F Y 2019 Phys. Rev. Lett. 123 237206 |
[24] | Wu N, He X, Wysocki A L, Lanke U, Komesu T, Belashchenko K D, Binek C, and Dowben P A 2011 Phys. Rev. Lett. 106 087202 |
[25] | Chen H Y, Yu Y, Wang Z, Bai Y, Lin H X, Li X L, Liu H, Miao T, Kou Y F, Zhang Y S, Li Y, Tang J, Wang Z C, Cai P, Zhu Y Y, Cheng Z H, Zhong X Y, Wang W B, Gao X Y, Yin L F, Wu R Q, and Shen J 2019 Phys. Rev. B 99 214419 |
[26] | Shi Y J, Zhou Y, Ding H F, Zhang F M, Pi L, Zhang Y H, and Wu D 2012 Appl. Phys. Lett. 101 122409 |
[27] | Lepetit M B, Mercey B, and Simon C 2012 Phys. Rev. Lett. 108 087202 |
[28] | Tebano A, Aruta C, Sanna S, Medaglia P G, Balestrino G, Sidorenko A A, De Renzi R, Ghiringhelli G, Braicovich L, Bisogni V, and Brookes N B 2008 Phys. Rev. Lett. 100 137401 |
[29] | Shen J, Ward T Z, and Yin L F 2013 Chin. Phys. B 22 017501 |
[30] | Uchida K I, Qiu Z Y, Kikkawa T, Iguchi R, and Saitoh E 2015 Appl. Phys. Lett. 106 052405 |
[31] | Ahmed A S, Lee A J, Bagués N, McCullian B A, Thabt A M A, Perrine A, Wu P, Rowland J R, Randeria M, Hammel P C, McComb D W, and Yang F Y 2019 Nano Lett. 19 5683 |
[32] | Mørup S and Frandsen C 2004 Phys. Rev. Lett. 92 217201 |
[33] | Hermsmeier B, Osterwalder J, Friedman D J, and Fadley C S 1989 Phys. Rev. Lett. 62 478 |
[34] | Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|