Chin. Phys. Lett.  2022, Vol. 39 Issue (10): 108501    DOI: 10.1088/0256-307X/39/10/108501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Enhanced Anomalous Hall Effect of Pt on an Antiferromagnetic Insulator with Fully Compensated Surface
Yu Bai1,3†, Zhe Wang3†, Na Lei6†, Wisal Muhammad1,3, Lifeng Xiang1,3, Qiang Li1,3, Huilin Lai1,3, Yinyan Zhu1,2,4, Wenbing Wang1,2,4, Hangwen Guo1,2,4, Lifeng Yin1,2,3,4,5,8*, Ruqian Wu7*, and Jian Shen1,2,3,4,5,8*
1State Key Laboratory of Surface Physics and Institute for Nanoelectronics Devices and Quantum Computing, Fudan University, Shanghai 200433, China
2Shanghai Qi Zhi Institute, Shanghai 200232, China
3Department of Physics, Fudan University, Shanghai 200433, China
4Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
5Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
6Fert Beijing Institute, BDBC, School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
7Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
8Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Cite this article:   
Yu Bai, Zhe Wang, Na Lei et al  2022 Chin. Phys. Lett. 39 108501
Download: PDF(3880KB)   PDF(mobile)(3926KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a significantly enhanced anomalous Hall effect (AHE) of Pt on antiferromagnetic insulator thin film (3-unit-cell La$_{0.7}$Sr$_{0.3}$MnO$_{3}$, abbreviated as LSMO), which is one order of magnitude larger than that of Pt on other ferromagnetic (e.g. Y$_{3}$Fe$_{5}$O$_{12}$) and antiferromagnetic (e.g. Cr$_{2}$O$_{3}$) insulator thin films. Our experiments demonstrate that the antiferromagnetic La$_{0.7}$Sr$_{0.3}$MnO$_{3}$ with fully compensated surface suppresses the positive anomalous Hall resistivity induced by the magnetic proximity effect and facilitates the negative anomalous Hall resistivity induced by the spin Hall effect. By changing the substrate's temperature during Pt deposition, we observed that the diffusion of Mn atoms into Pt layer can further enhance the AHE. The anomalous Hall resistivity increases with increasing temperature and persists even well above the Neel temperature ($T_{\rm N}$) of LSMO. The Monte Carlo simulations manifest that the unusual rise of anomalous Hall resistivity above $T_{\rm N}$ originates from the thermal induced magnetization in the antiferromagnetic insulator.
Received: 01 August 2022      Editors' Suggestion Published: 23 September 2022
PACS:  73.50.Jt (Galvanomagnetic and other magnetotransport effects)  
  72.15.Eb (Electrical and thermal conduction in crystalline metals and alloys)  
  72.15.Gd (Galvanomagnetic and other magnetotransport effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/10/108501       OR      https://cpl.iphy.ac.cn/Y2022/V39/I10/108501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu Bai
Zhe Wang
Na Lei
Wisal Muhammad
Lifeng Xiang
Qiang Li
Huilin Lai
Yinyan Zhu
Wenbing Wang
Hangwen Guo
Lifeng Yin
Ruqian Wu
and Jian Shen
[1] Karplus R and Luttinger J M 1954 Phys. Rev. 95 1154
[2] Smit J 1958 Physica 24 39
[3] Berger L 1970 Phys. Rev. B 2 4559
[4] Nagaosa N, Sinova J, Onoda S, MacDonald A H, and Ong N P 2010 Rev. Mod. Phys. 82 1539
[5] Vavra W, Lee C H, Lamelas F J, He H, Clarke R, and Uher C 1990 Phys. Rev. B 42 4889
[6] Keskin V, Schmalhorst B A J, Reiss G, Zhang H, Weischenberg J, and Mokrousov Y 2013 Appl. Phys. Lett. 102 022416
[7] Shaya O, Karpovski M, and Gerber A 2007 J. Appl. Phys. 102 043910
[8] Rosenblatt D, Karpovski M, and Gerber A 2010 Appl. Phys. Lett. 96 022512
[9] Guo Z B, Mi W B, Aboljadayel R O, Zhang B, Zhang Q, Barba P G, Manchon A, and Zhang X X 2012 Phys. Rev. B 86 104433
[10] Kou X L, Schmalhorst J M, Keskin V, and Reiss G 2012 J. Appl. Phys. 112 093915
[11] Tsui F, Chen B X, Barlett D, Clarke R, and Uher C 1994 Phys. Rev. Lett. 72 740
[12] Canedy C L, Li X W, and Xiao G 1997 J. Appl. Phys. 81 5367
[13] Christides C and Speliotis T 2005 J. Appl. Phys. 97 013901
[14] Moritz J, Rodmacq B, Auffret S, and Dieny B 2008 J. Phys. D 41 135001
[15] Zhao J, Wang Y J, Han X F, Zhang S, and Ma X H 2010 Phys. Rev. B 81 172404
[16] Xu W J, Zhang B, Liu Z X, Wang Z, Li W, Wu Z B, Yu R H, and Zhang X X 2010 Europhys. Lett. 90 27004
[17] Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprägs S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B, and Saitoh E 2013 Phys. Rev. Lett. 110 206601
[18] Huang S Y, Fan X, Qu D, Chen Y P, Wang W G, Wu J, Chen T Y, Xiao J Q, and Chien C L 2012 Phys. Rev. Lett. 109 107204
[19] Zhou X, Ma L, Shi Z, Fan W J, Zheng J G, Evans R F L, and Zhou S M 2015 Phys. Rev. B 92 060402(R)
[20] Liang X, Shi G Y, Deng L J, Huang F, Qin J, Tang T T, Wang C T, Peng B, Song C, and Bi L 2018 Phys. Rev. Appl. 10 024051
[21] Ma L, Fu H R, Tang M, Qiu X P, Shi Z, You C Y, Tian N, and Zheng J G 2020 Appl. Phys. Lett. 117 122405
[22] Ding S L, Liang Z Y, Yun C, Wu R, Xue M Z, Lin Z C, Ross A, Becker S, Yang W Y, Ma X B, Chen D F, Sun K, Jakob G, Kläui M, and Yang J B 2021 Phys. Rev. B 104 224410
[23] Cheng Y, Yu S S, Zhu M L, Hwang J, and Yang F Y 2019 Phys. Rev. Lett. 123 237206
[24] Wu N, He X, Wysocki A L, Lanke U, Komesu T, Belashchenko K D, Binek C, and Dowben P A 2011 Phys. Rev. Lett. 106 087202
[25] Chen H Y, Yu Y, Wang Z, Bai Y, Lin H X, Li X L, Liu H, Miao T, Kou Y F, Zhang Y S, Li Y, Tang J, Wang Z C, Cai P, Zhu Y Y, Cheng Z H, Zhong X Y, Wang W B, Gao X Y, Yin L F, Wu R Q, and Shen J 2019 Phys. Rev. B 99 214419
[26] Shi Y J, Zhou Y, Ding H F, Zhang F M, Pi L, Zhang Y H, and Wu D 2012 Appl. Phys. Lett. 101 122409
[27] Lepetit M B, Mercey B, and Simon C 2012 Phys. Rev. Lett. 108 087202
[28] Tebano A, Aruta C, Sanna S, Medaglia P G, Balestrino G, Sidorenko A A, De Renzi R, Ghiringhelli G, Braicovich L, Bisogni V, and Brookes N B 2008 Phys. Rev. Lett. 100 137401
[29] Shen J, Ward T Z, and Yin L F 2013 Chin. Phys. B 22 017501
[30] Uchida K I, Qiu Z Y, Kikkawa T, Iguchi R, and Saitoh E 2015 Appl. Phys. Lett. 106 052405
[31] Ahmed A S, Lee A J, Bagués N, McCullian B A, Thabt A M A, Perrine A, Wu P, Rowland J R, Randeria M, Hammel P C, McComb D W, and Yang F Y 2019 Nano Lett. 19 5683
[32] Mørup S and Frandsen C 2004 Phys. Rev. Lett. 92 217201
[33] Hermsmeier B, Osterwalder J, Friedman D J, and Fadley C S 1989 Phys. Rev. Lett. 62 478
[34] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005
Related articles from Frontiers Journals
[1] Weizheng Cao, Yunlong Su, Qi Wang, Cuiying Pei, Lingling Gao, Yi Zhao, Changhua Li, Na Yu, Jinghui Wang, Zhongkai Liu, Yulin Chen, Gang Li, Jun Li, and Yanpeng Qi. Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi[J]. Chin. Phys. Lett., 2022, 39(4): 108501
[2] Yequan Chen, Ruxin Liu, Yongda Chen, Xiao Yuan, Jiai Ning, Chunchen Zhang, Liming Chen, Peng Wang, Liang He, Rong Zhang, Yongbing Xu, and Xuefeng Wang. Large-Area Freestanding Weyl Semimetal WTe$_{2}$ Membranes[J]. Chin. Phys. Lett., 2021, 38(1): 108501
[3] Guangqiang Wang, Guoqing Chang, Huibin Zhou, Wenlong Ma, Hsin Lin, M. Zahid Hasan, Su-Yang Xu, and Shuang Jia. Field-Induced Metal–Insulator Transition in $\beta$-EuP$_3$[J]. Chin. Phys. Lett., 2020, 37(10): 108501
[4] Shan Li, Jun Lu, Lian-Jun Wen, Dong Pan, Hai-Long Wang, Da-Hai Wei, and Jian-Hua Zhao. Unusual Anomalous Hall Effect in a Co$_{2}$MnSi/MnGa/Pt Trilayer[J]. Chin. Phys. Lett., 2020, 37(7): 108501
[5] Yequan Chen, Yongda Chen, Jiai Ning, Liming Chen, Wenzhuo Zhuang, Liang He, Rong Zhang, Yongbing Xu, Xuefeng Wang. Observation of Shubnikov-de Haas Oscillations in Large-Scale Weyl Semimetal WTe$_{2}$ Films[J]. Chin. Phys. Lett., 2020, 37(1): 108501
[6] ZHAO Jing, WANG Yin-Jun, HAN Xiu-Feng. Dependence of Interlayer AF Coupling on Ferromagnetic Layer Thickness in [Pt/Co]5/Ru/[Co/Pt]5 Multilayers[J]. Chin. Phys. Lett., 2009, 26(3): 108501
[7] WANG Zhi-Ming, XING Ding-Yu, ZHANG Shi-Yuan, XU Qing-Yu, Margriet VanBael, DU You-Wei. Magnetic-Field-Induced Semimetal-Insulator-like Transition in Highly Oriented Pyrolitic Graphite[J]. Chin. Phys. Lett., 2007, 24(1): 108501
[8] XIONG Jian-Wen, HU Liang-Bin, ZHANG Zhen-Xi. Suppression of Direct Spin Hall Currents in Two-Dimensional Electronic Systems with both Rashba and Dresselhaus Spin-Orbit Couplings[J]. Chin. Phys. Lett., 2006, 23(5): 108501
[9] ZHOU Yong, YANG Chun-Sheng, YU Jin-Qiang, ZHAO Xiao-Lin, MAO Hai-Ping. Giant Magneto-Impedance Effect in Sandwiched FeSiB/Cu/FeSiB Films[J]. Chin. Phys. Lett., 2000, 17(11): 108501
[10] LIANG Bing-qing, WANG Yin-jun. Longitudinal Magnetoresistance Effect at Low Temperature in Silver Telluride Thin Films[J]. Chin. Phys. Lett., 1999, 16(10): 108501
[11] WANG Zhi-hai, LIAN Gui-jun, GAO Ju, ZHOU Ya-qin, KANG Jin-feng, LI Mei-ya, XIONG Guang-cheng. Large Low-Field Magnetoresistance Observed in Polycrystalline La0.7Ca0.3MnO3 Films[J]. Chin. Phys. Lett., 1999, 16(1): 108501
[12] ZHANG Wu-shou, LI Bo-zang. Magnetoresistance and Interlayer Exchange Coupling in Ferromagnetic/Nonmagnetic/Insulator (Semiconductor) /Ferromagnetic Tunnel Junctions[J]. Chin. Phys. Lett., 1998, 15(4): 108501
[13] DU Qinghong, MAO Jianmin, WANG Taihong, CHENG Wenqin, ZHOU Junming, HUANG Qi . Magnetic Depopulation of Subbands in Very Narrow Quantum Channels[J]. Chin. Phys. Lett., 1991, 8(9): 108501
[14] HE Zhenhui, SHA Jian, SU Zhenpeng, CHENG Xiang ai, WANG Shunxi, FANG Minghu, ZHANG Qirui, ZHOU Xianyi, YAO Weiguo, QI Zhenzhong, YI Huairen, LI Hongcheng. Studies of the Anomaly of Hall Coefficient in High Tc Superconducting Thin Films[J]. Chin. Phys. Lett., 1991, 8(6): 108501
Viewed
Full text


Abstract