Chin. Phys. Lett.  2022, Vol. 39 Issue (7): 070301    DOI: 10.1088/0256-307X/39/7/070301
GENERAL |
Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology
Yanxin Han1, Zhongqi Sun1, Tianqi Dou2, Jipeng Wang1, Zhenhua Li1, Yuqing Huang1, Pengyun Li3, and Haiqiang Ma1*
1School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
2China Telecom Research Institute, Beijing 102209, China
3China Academy of Electronics and Information Technology, China Electronic Technology Group Corporation, Beijing 100041, China
Cite this article:   
Yanxin Han, Zhongqi Sun, Tianqi Dou et al  2022 Chin. Phys. Lett. 39 070301
Download: PDF(537KB)   PDF(mobile)(642KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum key distribution (QKD) generates information-theoretical secret keys between two parties based on the physical laws of quantum mechanics. Following the advancement in quantum communication networks, it becomes feasible and economical to combine QKD with classical optical communication through the same fiber using dense wavelength division multiplexing (DWDM) technology. This study proposes a detailed scheme of TF-QKD protocol with DWDM technology and analyzes its performance, considering the influence of quantum channel number and adjacent quantum crosstalk on the secret key rates. The simulation results show that the scheme further increases the secret key rate of TF-QKD and its variants. Therefore, this scheme provides a method for improving the secret key rate for practical quantum networks.
Received: 14 April 2022      Published: 17 June 2022
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/7/070301       OR      https://cpl.iphy.ac.cn/Y2022/V39/I7/070301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yanxin Han
Zhongqi Sun
Tianqi Dou
Jipeng Wang
Zhenhua Li
Yuqing Huang
Pengyun Li
and Haiqiang Ma
[1] Bennett C H and Brassard G 2014 Theor. Comput. Sci. 560 7
[2]Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, 9–12 December 1999, Banglore, India, p 175
[3] Bennett C H, DiVincenzo D P, Smolin J A, and Wootters W K 1996 Phys. Rev. A 54 3824
[4] Diamanti E, Lo H K, Qi B, and Yuan Z 2016 npj Quantum Inf. 2 16025
[5] Lütkenhaus N and Shields A J 2009 New J. Phys. 11 045005
[6] Dou T Q, Wang J P, Li Z H, Qu W X, Yang S Y, Sun Z Q, Zhou F, Han Y X, Huang Y Q, and Ma H Q 2020 Chin. Phys. Lett. 37 110301
[7] Huang L Y, Zhang Y C, and Yu S 2021 Chin. Phys. Lett. 38 040301
[8] Gisin N, Ribordy G, Tittel W, and Zbinden H 2002 Rev. Mod. Phys. 74 145
[9] Xu P, Bao S W, Li H W, Wang Y, and Bao H Z 2017 Chin. Phys. Lett. 34 020302
[10] Tang G Z, Sun S H, and Li C Y 2019 Chin. Phys. Lett. 36 070301
[11] Wang X B 2005 Phys. Rev. A 72 012322
[12] Lo H K, Ma X, and Chen K 2005 Phys. Rev. Lett. 94 230504
[13] Brassard G, Lütkenhaus N, Mor T, and Sanders B C 2000 Phys. Rev. Lett. 85 1330
[14] Lo H K, Curty M, and Qi B 2012 Phys. Rev. Lett. 108 130503
[15] Boaron A et al. 2018 Phys. Rev. Lett. 121 190502
[16] Takeoka M, Guha S, and Wilde M M 2014 Nat. Commun. 5 5235
[17] Pirandola S, Laurenza R, Ottaviani C, and Banchi L 2017 Nat. Commun. 8 15043
[18] Lucamarini M, Yuan Z L, Dynes J F, and Shields A J 2018 Nature 557 400
[19] Ma X, Zeng P, and Zhou H 2018 Phys. Rev. X 8 031043
[20] Wang X B, Yu Z W, and Hu X L 2018 Phys. Rev. A 98 062323
[21] Cui C, Yin Z Q, Wang R, Chen W, Wang S, Guo G C, and Han Z H 2019 Phys. Rev. Appl. 11 034053
[22] Ishio H, Minowa J, and Nosu K 1984 J. Lightwave Technol. 2 448
[23] Townsend P D 1997 Electron. Lett. 33 188
[24] Nweke N I 2005 Appl. Phys. Lett. 87 174103
[25] Patel K A, Dynes J F, Lucamarini M, Choi I, Sharpe A W, Yuan Z L, Penty R V, and Shields A J 2014 Appl. Phys. Lett. 104 051123
[26] Sun W et al. 2018 J. Appl. Phys. 123 043105
[27] Eriksson T et al. 2019 Commun. Phys. 2 9
[28] Cai C, Sun Y, and Ji Y 2020 New J. Phys. 22 083020
[29] Lin R and Chen J 2021 IEEE Commun. Lett. 25 3918
[30] Li J H, Shi L, Wang J H, Li T X, and Xue Y 2021 AOPC: Optical Sensing and Imaging Technology. SPIE 12065 1206530
[31] Xue R et al. 2022 Phys. Rev. Appl. 17 024045
[32] Shi S and Xiao N 2022 Opt. Commun. 507 127603
[33] Zeng P, Zhou H Y, Wu W J, and Ma X F 2022 arXiv:2201.04300 [quant-ph]
[34] Patel K, Dynes J, Lucamarini M, Choi I, Sharpe A, Yuan Z, Penty R, and Shields A 2014 Appl. Phys. Lett. 104 051123
[35] Patel K, Dynes J, Choi I, Sharpe A, Dixon A, Yuan Z, Penty R, and Shields A 2012 Phys. Rev. X 2 041010
[36] Peters N et al. 2009 New J. Phys. 11 045012
[37] Lo H K, Chau H F, and Ardehali M 2005 J. Cryptology 18 133
[38] Yoshino K I et al. 2012 Opt. Lett. 37 223
[39] Sun Z Q et al. 2021 Chin. Phys. B 30 110303
Related articles from Frontiers Journals
[1] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 070301
[2] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 070301
[3] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 070301
[4] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 070301
[5] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 070301
[6] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 070301
[7] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 070301
[8] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 070301
[9] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 070301
[10] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 070301
[11] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 070301
[12] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 070301
[13] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 070301
[14] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 070301
[15] Min Xiao, Yun-Ru Cao, Xiu-Li Song. Efficient and Secure Authenticated Quantum Dialogue Protocols over Collective-Noise Channels[J]. Chin. Phys. Lett., 2017, 34(3): 070301
Viewed
Full text


Abstract