Chin. Phys. Lett.  2019, Vol. 36 Issue (12): 124701    DOI: 10.1088/0256-307X/36/12/124701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation
Gui-Hao Jia**, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou
Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
Gui-Hao Jia, Yu Xu, Xiao Kong et al  2019 Chin. Phys. Lett. 36 124701
Download: PDF(5143KB)   PDF(mobile)(5306KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the linear local induction approximation, we investigate the self-induced motion of a vortex-line that corresponds to the motion of a particle in quantum mechanics. Provided Kelvin waves, the effective Schrödinger equation, physical quantity operators, and the corresponding path-integral formula can be obtained. In particular, the effective Planck constant defined by parameters of vortex-line motion shows the mathematical relation between the two fields. The vortexline–particle mapping may help in understanding particle motion in quantum mechanics.
Received: 09 July 2019      Published: 25 November 2019
PACS:  47.32.-y (Vortex dynamics; rotating fluids)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  03.65.-w (Quantum mechanics)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 1167402.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/12/124701       OR      https://cpl.iphy.ac.cn/Y2019/V36/I12/124701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Gui-Hao Jia
Yu Xu
Xiao Kong
Cui-Xian Guo
Si-Lei Liu
Su-Peng Kou
[1]Thomson W 1867 Trans. R. Soc. Edinburgh 25 217
[2]Hall H E 1958 Proc. R. Soc. A 245 546
[3]Batchelor G K 1970 An Introduction Fluid Dynamics (Cambridge: Cambridge University Press)
[4]Hasimoto H 1972 J. Fluid Mech. 51 477
[5]Donnelly R J and Barenghi C F 1998 J. Phys. Chem. Ref. Data 27 1217
[6]Boffetta G, Celani A, Dezzani D, Laurie J and Nazarenko S 2009 J. Low Temp. Phys. 156 193
[7]Salman H 2014 J. Phys.: Conf. Ser. 544 012005
[8]Salman H 2013 Phys. Rev. Lett. 111 165301
[9]Vinen W F and Niemela J J 2002 J. Low Temp. Phys. 128 167
[10]Laurie J, L'Vov V S, Nazarenko S and Rudenko O 2010 Phys. Rev. B 81 104526
[11]Schrö dinger E 1926 Ann. Phys. 384 361
[12]Malomed B 2005 Nonlinear Schrödinger Equations in Encyclopedia (Cambridge: Farlex)
[13]Batygin K 2018 Mon. Not. R. Astron. Soc. 475 5070
[14]Barenghi C F, Donnelly R J and Vinen W F 1983 J. Low Temp. Phys. 52 189
[15]Baggaley A W 2012 J. Low Temp. Phys. 168 18
[16]Fonda E, Meichle D P, Ouellette N T, Hormoz S and Lathrop D P 2014 Proc. Natl. Acad. Sci. USA 111 4707
[17]Tong B G, Yin X Y and Zhu K Q 2009 Theory of Vorticity (Beijing: China Science and Technology University Press) (in Chinese)
[18]Feynman R P 1955 Prog. Low Temp. Phys. 1 17
[19]Kou S P 2017 Int. J. Mod. Phys. B 31 1750241
Related articles from Frontiers Journals
[1] Han Zhang, Yang Gao. Acoustic Vortex Beam Generation by a Piezoelectric Transducer Using Spiral Electrodes[J]. Chin. Phys. Lett., 2019, 36(11): 124701
[2] WANG Deng-Pan, ZHAO Yu-Xin, XIA Zhi-Xun, WANG Qing-Hua, and LUO Zhen-Bing. Flow Visualization of Supersonic Flow over a Finite Cylinder[J]. Chin. Phys. Lett., 2012, 29(8): 124701
[3] XU Tao. Topological Structure of Vortices in Multicomponent Bose-Einstein Condensates[J]. Chin. Phys. Lett., 2009, 26(9): 124701
[4] XIA Yong, LU De-Tang, LIU Yang, XU You-Sheng. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder[J]. Chin. Phys. Lett., 2009, 26(3): 124701
[5] SONG Jun, SONG Jin-Bao. Effects of Buoyancy on Langmuir Circulation[J]. Chin. Phys. Lett., 2008, 25(5): 124701
[6] SUN Liang. Essence of Inviscid Shear Instability: a Point View of Vortex Dynamics[J]. Chin. Phys. Lett., 2008, 25(4): 124701
[7] QIAN Su-Ping, TIAN Li-Xin. Modification of the Clarkson--Kruskal Direct Method for a Coupled System[J]. Chin. Phys. Lett., 2007, 24(10): 124701
[8] TANG Xiao-Yan, HUANG Fei, , LOU Sen-Yue,. Variable Coefficient KdV Equation and the Analytical Diagnoses of a Dipole Blocking Life Cycle[J]. Chin. Phys. Lett., 2006, 23(4): 124701
Viewed
Full text


Abstract