Chin. Phys. Lett.  2019, Vol. 36 Issue (5): 050501    DOI: 10.1088/0256-307X/36/5/050501
GENERAL |
Multiple Soliton Solutions of Alice–Bob Boussinesq Equations
Hui Li1, S. Y. Lou1,2**
1School of Physical Science and Technology, Ningbo University, Ningbo 315211
2Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062
Cite this article:   
Hui Li, S. Y. Lou 2019 Chin. Phys. Lett. 36 050501
Download: PDF(1761KB)   PDF(mobile)(1759KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Three Alice–Bob Boussinesq (ABB) nonlocal systems with shifted parity ($\hat{P}_{\rm s}$), delayed time reversal ($\hat{T}_{\rm d}$) and $\hat{P}_{\rm s}\hat{T}_{\rm d}$ nonlocalities are investigated. The multi-soliton solutions of these models are systematically found from the $\hat{P}_{\rm s}$, $\hat{T}_{\rm d}$ and $\hat{P}_{\rm s}\hat{T}_{\rm d}$ symmetry reductions of a coupled local Boussinesq system. The result shows that for ABB equations with $\hat{P}_{\rm s}$ and/or $\hat{T}_{\rm d}$ nonlocality, an odd number of solitons is prohibited. The solitons of the $\hat{P}_{\rm s}$ nonlocal ABB and $\hat{T}_{\rm d}$ nonlocal ABB equations must be paired, while any number of solitons is allowed for the $\hat{P}_{\rm s}\hat{T}_{\rm d}$ nonlocal ABB system. $t$-breathers, $x$-breathers and rogue waves exist for all three types of nonlocal ABB system. In particular, different from classical local cases, the first-order rogue wave can have not only four leaves but also five and six leaves.
Received: 11 February 2019      Published: 17 April 2019
PACS:  05.45.Yv (Solitons)  
  11.30.Er (Charge conjugation, parity, time reversal, and other discrete symmetries)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11435005, and the K. C. Wong Magna Fund in Ningbo University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/5/050501       OR      https://cpl.iphy.ac.cn/Y2019/V36/I5/050501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui Li
S. Y. Lou
[1]Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[2]Konotop V V, Yang J K and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002
[3]Ablowitz M J and Musslimani Z H 2013 Phys. Rev. Lett. 110 064105
[4]Lou S Y 2018 J. Math. Phys. 59 083507
[5]Lou S Y and Huang F 2017 Sci. Rep. 7 869
[6]Lou S Y 2017 Chin. Phys. Lett. 34 060201
[7]Jia M and Lou S Y 2018 Phys. Lett. A 382 1157
[8]Lou S Y 2019 Stud. Appl. Math. 142 (accepted)
[9]Lou S Y 2019 arXiv:1901.02828
[10]Song Q C, Xiao D M and Zhu Z N 2017 Commun. Nonlinear Sci. & Numer. Simul. 47 1
[11]Modak S, Singh A and Panigrahi P 2016 Eur. Phys. J. B 89 149
[12]Ablowitz M J and Musslimani Z H 2016 Nonlinearity 29 915
[13]Ji J L and Zhu Z N 2017 J. Math. Anal. Appl. 453 973
[14]Ablowitz M J and Musslimani Z H 2014 Phys. Rev. E 90 032912
[15]Dimakos M and Fokas A S 2013 J. Math. Phys. 54 081504
[16]Fokas A S 2016 Nonlinearity 29 319
[17]Rao J G, Cheng Y and He J S 2017 Stud. Appl. Math. 139 568
[18]Rao J G, Zhang Y S, Fokas A S and He J S 2018 Nonlinearity 31 4090
[19]Yang B and Chen Y 2018 Nonl. Dyn. 94 489
[20]Peng L, Yang X D and Lou S Y 2012 Commun. Theor. Phys. 58 1
[21]Hirota R 1971 Phys. Rev. Lett. 27 1192
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 050501
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 050501
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 050501
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 050501
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 050501
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 050501
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 050501
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 050501
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 050501
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 050501
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 050501
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 050501
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 050501
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 050501
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 050501
Viewed
Full text


Abstract