Chin. Phys. Lett.  2019, Vol. 36 Issue (5): 054201    DOI: 10.1088/0256-307X/36/5/054201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Polarization Conversion of Single Photon via Scattering by a ${\Lambda}$ System in a Semi-Infinite Waveguide
Fu-Qiang Yu1,2, Mu-Tian Cheng1,2**, Shao-Ming Li1,2, Xiao-San Ma1,2, Zhi-Feng Zhu1,2, Xian-Shan Huang3
1Anhui Provincial Key Lab of Power Electronics and Motion Control, Anhui University of Technology, Maanshan 243002
2School of Electrical Engineering and Information, Anhui University of Technology, Maanshan 243002
3School of Mathematics and Physics, Anhui University of Technology, Maanshan 243002
Cite this article:   
Fu-Qiang Yu, Mu-Tian Cheng, Shao-Ming Li et al  2019 Chin. Phys. Lett. 36 054201
Download: PDF(1091KB)   PDF(mobile)(1074KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically investigate single-photon polarization conversion via scattering by an atom with ${\Lambda}$ configuration coupled to a semi-infinite waveguide and discuss the two cases in which the ${\Lambda}$ system is non-degenerated and degenerated. By applying the hard-wall boundary condition of the semi-infinite waveguide, it is found that single-photon polarization conversion can be realized with unit probability for both cases under the ideal condition. Together with the polarization conversion, the frequency conversion of a single photon can also be realized with unit probability in the ideal case if the ${\Lambda}$ system is not degenerated.
Received: 23 January 2019      Published: 17 April 2019
PACS:  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  32.70.Jz (Line shapes, widths, and shifts)  
Fund: Supported by the Anhui Provincial Natural Science Foundation under Grant Nos 1608085MA05 and 1608085MA09, and the National Natural Science Foundation of China under Grant Nos 11774262 and 11474003.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/5/054201       OR      https://cpl.iphy.ac.cn/Y2019/V36/I5/054201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fu-Qiang Yu
Mu-Tian Cheng
Shao-Ming Li
Xiao-San Ma
Zhi-Feng Zhu
Xian-Shan Huang
[1]Liao Z et al 2016 Phys. Scr. 91 063004
[2]Roy D et al 2017 Rev. Mod. Phys. 89 021001
[3]Gu X, Kockum A F, Miranowicz A, Liu Y and Nori F 2017 Phys. Rep. 718–719 1
[4]Chang D E, Douglas J S, Tudela A G, Hung C L and Kimble H J 2018 Rev. Mod. Phys. 90 031002
[5]Sipahigil A, Evans R E, Sukachev D D, Burek M J, Borregaard J, Bhaskar M K, Nguyen C T, Pacheco J L, Atikian H A, Meuwly C, Camacho R M, Jelezko F, Bielejec E, Park H, Loncar M and Lukin M D 2016 Science 354 847
[6]Zheng H, Gauthier D J and Baranger H U 2013 Phys. Rev. Lett. 111 090502
[7]Liao Z and Zubairy M S 2018 Phys. Rev. A 98 023815
[8]Facchi P, Kim M S, Pascazio S, Pepe F V, Pomarico D and Tufarelli T 2016 Phys. Rev. A 94 043839
[9]Zheng A, Li J, Yu R, Lv X Y and Wu Y 2012 Opt. Express 20 16902
[10]Mirza I M and Schotland J C 2016 Phys. Rev. A 94 012302
[11]Li J, Yu R and Wu Y 2014 Phys. Rev. B 89 035311
[12]Li J, Yu R, Ding C, Wang W and Wu Y 2014 Phys. Rev. A 90 033830
[13]Liao Z, Nha H and Zubairy M S 2016 Phys. Rev. A 93 033851
[14]Li T, Miranowicz A, Hu X, Xia K and Nori F 2018 Phys. Rev. A 97 062318
[15]Zheng H and Baranger H U 2013 Phys. Rev. Lett. 110 113601
[16]Song G Z, Munro E, Nie W, Deng F G, Yang G J and Kwek L C 2017 Phys. Rev. A 96 043872
[17]Song G Z, Munro E, Nie W, Kwek L C, Deng F G and Long G L 2018 Phys. Rev. A 98 023814
[18]Shen J T and Fan S 2005 Opt. Lett. 30 2001
[19]Zhou L, Gong Z R, Liu Y, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501
[20]Kim N C, Li J B, Yang Z J, Hao Z H and Wang Q Q 2010 Appl. Phys. Lett. 97 061110
[21]Yan C H and Wei L F 2016 Phys. Rev. A 94 053816
[22]Cheng M T, Luo Y Q, Wang P Z and Zhao G X 2010 Appl. Phys. Lett. 97 191903
[23]Ko M C, Kim N C, Ho N C, Ryom J S, Hao Z H, Li J B and Wang Q Q 2017 Appl. Phys. B 123 287
[24]Kim N C, Ko M C and Choe C 2015 Plasmonics 10 1447
[25]Li J B, He M D, Wang X J, Peng X F and Chen L Q 2014 Chin. Phys. B 23 067302
[26]Zhou T, Zang X F and Xu D H 2014 Chin. Phys. Lett. 31 040302
[27]Zhou T, Zang X F and Chen J 2014 Chin. Phys. Lett. 31 070301
[28]Tian W, Chen B and Xu W D 2012 Chin. Phys. Lett. 29 030302
[29]Chang D E, Sørensen A S, Demler E A and Lukin M D 2007 Nat. Phys. 3 807
[30]Kyriienko O and Sørensen A S 2016 Phys. Rev. Lett. 117 140503
[31]Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett. 111 103604
[32]Lu J, Zhou L, Kuang L M and Nori F 2014 Phys. Rev. A 89 013805
[33]Yan G A, Qiao H X, Lu H and Chen A X 2017 Sci. Chin. Phys. Mech. 60 090311
[34]Yan C H, Li Y, Yuan H and Wei L F 2018 Phys. Rev. A 97 023821
[35]Scheucher M, Hilico A, Will E, Volz J and Rauschenbeutel A 2016 Science 354 1577
[36]Xia K Y, Lu G W, Lin G W, Cheng Y Q, Niu Y P, Gong S Q and Twamley J 2014 Phys. Rev. A 90 043802
[37]Sayrin C, Junge C, Mitsch R, Albrecht B, O Shea D, Schneeweiss P, Volz J and Rauschenbeutel A 2015 Phys. Rev. X 5 041036
[38]Xia K Y, Nori F and Xiao M 2018 Phys. Rev. Lett. 121 203602
[39]Xu X W, Chen A X, Li Y and Liu Y X 2017 Phys. Rev. A 95 063808
[40]Xia X, Zhang X, Xu J, Cheng M and Yang Y 2018 Chin. Phys. B 27 114205
[41]Xia X, Zhang X, Xu J, Cheng M and Yang Y 2017 J. Appl. Phys. 122 023102
[42]Wu N, Zhang C, Jin X R, Zhang Y Q and Lee Y P 2018 Opt. Express 26 003839
[43]Lu Y N, Gao S Y, Fang A P, Li P B, Li F L and Zubairy M S 2017 Opt. Express 25 16151
[44]Xu X W, Chen A X, Li Y and Liu Y X 2017 Phys. Rev. A 96 053853
[45]Guo Y, Xiao M and Fan S H 2017 Phys. Rev. Lett. 119 167401
[46]Liu F, Xu J P and Yang Y P 2014 J. Opt. Soc. Am. B 31 735
[47]Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908
[48]Hao J M, Ren Q J, An Z H, Huang X Q, Chen Z H, Qiu M and Zhou L 2009 Phys. Rev. A 80 023807
[49]Cong L Q, Cao W, Zhang X Q, Tian Z, Gu J Q, Singh R, Han J G and Zhang W L 2013 Appl. Phys. Lett. 103 171107
[50]Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304
[51]Tsoi T S and Law C K 2009 Phys. Rev. A 80 033823
[52]Zhang Z Y, Dong Y L, Zhang S L and Zhu S Q 2013 Opt. Express 21 20786
[53]Li M X, Yang J, Lin G W, Niu Y P and Gong S Q 2018 Chin. Phys. B 27 054206
[54]Cheng M T, Xia X W, Xu J P, Zhu C J, Wang B and Ma X S 2018 Opt. Express 26 28872
[55]Yan C H, Wei L F, Jia W Z and Shen J T 2011 Phys. Rev. A 84 045801
[56]Yan C H, Jia W Z and Wei L F 2014 Phys. Rev. A 89 033819
[57]Yuan L Q, Xu S and Fan S 2015 Opt. Lett. 40 5140
[58]Witthaut D and Sorensen A S 2010 New J. Phys. 12 043052
Related articles from Frontiers Journals
[1] Ce Shi, Mu-Tian Cheng, Xiao-San Ma, Dong Wang, Xianshan Huang, Bing Wang, Jia-Yan Zhang. Nonreciprocal Single Photon Frequency Conversion via Chiral Coupling between a V-Type System and a Pair of Waveguides[J]. Chin. Phys. Lett., 2018, 35(5): 054201
[2] P. Harshavardhan Reddy, N. A. A. Kadir, M. C. Paul, S. Das, A. Dhar, E. I. Ismail, A. A. Latiff, S. W. Harun. Erbium-Doped Zirconia-Alumina Silica Glass-Based Fiber as a Saturable Absorber for High Repetition Rate Q-Switched All-Fiber Laser Generation[J]. Chin. Phys. Lett., 2017, 34(8): 054201
[3] Li Wang, Yi-Hong Qi, Li Deng , Yue-Ping Niu, Shang-Qing Gong, Hong-Ju Guo. Effect of Phase Modulation on Electromagnetically Induced Grating in a Five-Level M-Type Atomic System[J]. Chin. Phys. Lett., 2017, 34(7): 054201
[4] M. F. A. Rahman, M. F. M. Rusdi, M. Q. Lokman, M. B. H. Mahyuddin, A. A. Latiff, A. H. A. Rosol, K. Dimyati, S. W. Harun. Holmium Oxide Film as a Saturable Absorber for 2μm Q-Switched Fiber Laser[J]. Chin. Phys. Lett., 2017, 34(5): 054201
[5] Yue-Chun Jiao, Xiao-Xuan Han, Zhi-Wei Yang, Jian-Ming Zhao, Suo-Tang Jia. Electromagnetically Induced Transparency in a Cold Gas with Strong Atomic Interactions[J]. Chin. Phys. Lett., 2016, 33(12): 054201
[6] CHEN Jing-Dong, FANG Yu-Hong, ZHANG Ting. High-Precision Two-Dimensional Atom Localization in a Cascade-Type Atomic System[J]. Chin. Phys. Lett., 2014, 31(10): 054201
[7] SUN Zhen, JIA Feng-Dong, LV Shuang-Fei, RUAN Ya-Ping, QING Bo, XUE Ping, XU Xiang-Yuan, DAI Xing-Can, ZHONG Zhi-Ping. The Inversionless Amplification in a Tripod System of 87Rb Atoms in a Magneto-optical Trap[J]. Chin. Phys. Lett., 2014, 31(04): 054201
[8] LIU Long-Wei, JIA Feng-Dong, RUAN Ya-Ping, HUANG Wei, LV Shuang-Fei, XUE Ping, XU Xiang-Yuan, DAI Xing-Can, ZHONG Zhi-Ping. The Probe Transmission Spectra of 87Rb in an Operating Magneto-Optical Trap in the Presence of an Ionizing Laser[J]. Chin. Phys. Lett., 2013, 30(4): 054201
[9] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 054201
[10] ZHAO Hong-Wei**, HU Wei-Xuan, XUE Chun-Lai, CHENG Bu-Wen, WANG Qi-Ming . Design of Waveguide Integrated Ge-Quantum-Well Electro-Absorption Modulators[J]. Chin. Phys. Lett., 2011, 28(1): 054201
[11] ZHANG Xiang-Yun, SUN Zhen-Rong, CHEN Guo-Liang, WANG Zu-Geng. Effect of Time-Dependent Ionization on Propagation of a Few-Cycle Circularly Polarized Laser Pulse in Two-Level Medium[J]. Chin. Phys. Lett., 2008, 25(1): 054201
Viewed
Full text


Abstract