Morphological and Microstructural Evolution and Related Impurity Incorporation in Non-Polar a -Plane GaN Grown on r-Sapphire Substrates
JIANG Ren-Yuan, XU Sheng-Rui** , ZHANG Jin-Cheng, JIANG Teng, JIANG Hai-Qing, WANG Zhi-Zhe, FAN Yong-Xiang, HAO Yue
Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071
Abstract :Effects of the growth temperature on morphological and microstructural evolution of a -plane GaN films grown on r-plane sapphires by metal organic chemical vapor deposition are investigated by atomic force microscopy and secondary ion mass spectroscopy (SIMS). Surface morphology, structural quality and related impurity incorporation are very sensitive to the growth temperature. A significant difference of yellow luminescence is observed and attributed to the incorporation of carbon into GaN films, which is confirmed by SIMS analysis. Our results show that the sample with triangular-pit morphology has significantly higher concentrations of oxygen than the other sample with pentagon-like pit morphology, which is induced by the existence of an N-face in triangular pits.
收稿日期: 2015-04-28
出版日期: 2015-10-02
:
81.15.Gh
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
81.10.Aj
(Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
71.55.Eq
(III-V semiconductors)
78.55.Ap
(Elemental semiconductors)
引用本文:
. [J]. 中国物理快报, 2015, 32(09): 98102-098102.
JIANG Ren-Yuan, XU Sheng-Rui, ZHANG Jin-Cheng, JIANG Teng, JIANG Hai-Qing, WANG Zhi-Zhe, FAN Yong-Xiang, HAO Yue. Morphological and Microstructural Evolution and Related Impurity Incorporation in Non-Polar a -Plane GaN Grown on r-Sapphire Substrates. Chin. Phys. Lett., 2015, 32(09): 98102-098102.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/32/9/098102
或
https://cpl.iphy.ac.cn/CN/Y2015/V32/I09/98102
[1] Nakamura S, Senoh M, Iwasa N, Nagahama S, Yamada T and Mukai T 1995 Jpn. J. Appl. Phys. 34 1332 [2] Chen D Y, Wang L, Xiong C B, Zheng C D, Mo C L and Jiang F Y 2013 Chin. Phys. Lett. 30 098101 [3] Pengelly R S, Wood S M, Milligan J W, Sheppard S T and Pribble W L 2012 IEEE Trans. Microwave Theory Tech. 60 1764 [4] Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H and Burrus C A 1984 Phys. Rev. Lett. 53 2173 [5] Sheu J K, Chang S J, Kuo C H, Wu L W, Lin Y C, Lai W C, Tsai J M, Chi G C and Wu R K 2003 IEEE Photon. Technol. Lett. 15 18 [6] Hwang S M, Seo Y G, Baik K H, Ch I So, Baek J H, Jung S K, Kim T G and Cho M W 2009 Appl. Phys. Lett. 95 071101 [7] Chakraborty A, Haskell B A, Keller S, Speck J S, DenBaars S P, Nakamura S and Mishr U K 2004 Appl. Phys. Lett. 85 5143 [8] Ding L Z, Chen H, He M, Jiang Y, Lu T P, Deng Z, Chen F S, Yang F, Yang Q and Zhang Y L 2014 Chin. Phys. Lett. 31 076101 [9] Liu C, Xie Z, Han P, Liu B, Li L, Zou J, Zhou S, Bai L H, Zhang C H, Zhang R and Zheng Y D 2007 J. Cryst. Growth 298 228 [10] Sun Q, Kwon S Y, Ren Z, Han J, Onuma T, Chichibu F S and Wang S 2008 Appl. Phys. Lett. 92 051112 [11] Xu S R, Hao Y, Zhang J C, Zhou X W, Cao Y R, Ou X X, Mao W, Du D C and Wang H 2010 Chin. Phys. B 19 107204 [12] Lee M, Mikulik D, Park S, Im K, Cho S H, Ko D, Kim U J, Hwang S and Yoon E 2014 J. Cryst. Growth 404 199 [13] Vennéguès P, Beaumont B, Bousquet V, Vaille M and Gibart P 2000 J. Appl. Phys. 87 4175 [14] Li X, Bishop G S and Coleman J J 1998 Appl. Phys. Lett. 73 1179 [15] Xu S R, Lin Z Y, Xue X Y, Liu Z Y, Ma J C, Jiang T, Mao W, Wang D H, Zhang J C and Hao Y 2012 Chin. Phys. Lett. 29 017803 [16] Pak S W, Lee D U, Kim E K, Park S H, Joo K and Yoon E 2013 J. Cryst. Growth 370 78 [17] Yang J K, Wei T B, Huo Z Q, Qu H, Zhang Y H, Duan R F and Wang J X 2014 J. Cryst. Growth 387 101 [18] Wang J X, Wang L S, Yang S Y, Li H J, Zhao G J, Zhang H, Wei H Y, Jiao C M, Zhu Q S and Wang Z G 2014 Chin. Phys. B 23 026801 [19] Qua S, Li S Q, Peng Y, Zhu X L, Hu X B, Wang C X, Chen X F, Gao Y Q and Xu X G 2010 J. Alloys Compd. 502 417 [20] Ma B, Hu W, Miyake H and Hiramatsu K 2009 Appl. Phys. Lett. 95 121910 [21] Ni X, Fu Y, Moon Y T, Biyikli N and Morko? H 2006 J. Cryst. Growth 290 166 [22] Ko T S and Wang T C 2007 J. Cryst. Growth 300 308 [23] Sun Q, Yerino C D, Ko T S, Cho Y S, Lee I H, Han J and Coltrin M E 2008 J. Appl. Phys. 104 093523 [24] Haskell B A, Wu F, Craven D M, Matsuda S, FiniP T, Fujii T, Fujito K, DenBaars S P, Speck J S and Nakamura S 2003 Appl. Phys. Lett. 83 644 [25] Neugebauer J and Van C G 1996 Appl. Phys. Lett. 69 503 [26] Parish G, Keller S, DenBaars S P and Mishra U K 2000 J. Electron. Mater. 29 16 [27] Xu S R, Hao Y, Zhang J C, Jiang T, Yang L, Lu X and Lin Z Y 2013 Nano Lett. 13 3654 [28] Strittmatter A, Krost A, Stra?burg M, Türck V, Bimberg D, Bl?sing J and Christen J 1999 Appl. Phys. Lett. 74 1242 [29] Fichtenbaum N A, Mates T E, Keller S, DenBaars S P and Mishra U K 2008 J. Cryst. Growth 310 1124 [30] Sumiya M, Yoshimura K, Ohtsuka K and Fuke S 2000 Appl. Phys. Lett. 76 2098 [31] Meister D, B?hm M, Topf M, Kriegseis W, Burkhardt W, Dirnstorfer I, R?sel S, Farangis B, Meyer B K, Hoffmann A, Siegle H, Thomsen C, Christen J and Bertram F 2000 J. Appl. Phys. 88 1811
[1]
. [J]. 中国物理快报, 2022, 39(4): 48101-.
[2]
. [J]. 中国物理快报, 2020, 37(10): 108101-.
[3]
. [J]. 中国物理快报, 0, (): 68501-.
[4]
. [J]. 中国物理快报, 2020, 37(6): 68501-.
[5]
. [J]. 中国物理快报, 2020, 37(4): 48101-.
[6]
. [J]. 中国物理快报, 2019, 36(1): 17302-.
[7]
. [J]. 中国物理快报, 2018, 35(9): 98101-.
[8]
. [J]. 中国物理快报, 2018, 35(7): 77103-.
[9]
. [J]. 中国物理快报, 2018, 35(7): 78101-.
[10]
. [J]. 中国物理快报, 2017, 34(8): 88101-.
[11]
. [J]. 中国物理快报, 2017, 34(5): 58101-.
[12]
. [J]. 中国物理快报, 2017, 34(4): 48101-048101.
[13]
. [J]. 中国物理快报, 2017, 34(2): 28802-028802.
[14]
. [J]. 中国物理快报, 2016, 33(12): 128102-128102.
[15]
. [J]. 中国物理快报, 2016, 33(11): 116101-116101.