Circuit Implementations, Bifurcations and Chaos of a Novel Fractional-Order Dynamical System
MIN Fu-Hong** , SHAO Shu-Yi, HUANG Wen-Di, WANG En-Rong
School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042
Abstract :Linear transfer function approximations of the fractional integrators 1/sm with m =0.80–0.99 with steps of 0.01 are calculated systemically from the fractional order calculus and frequency?domain approximation method. To illustrate the effectiveness for fractional functions, the magnitude Bode diagrams of the actual and approximate transfer functions 1 /sm with a slope of -20m dB/decade are depicted. By using the transfer function approximations of the fractional integrators, a new fractional-order nonlinear system is investigated through the bifurcation diagram and Lyapunov exponent. The corresponding circuit of the fractional-order system is designed and the experimental results match perfectly with the numerical simulations.
出版日期: 2015-02-26
[1] Ivo P 2011 Fractional-order Nonlinear Systems Modeling, Analysis and Simulation (Beijing: Higher Education Press) [2] Hartley T T, Lorenzo C F and Qammer H K 1995 IEEE Trans. Circuits Syst. 42 485 [3] Ahmad W M and Sprott J C 2003 Chaos Solitons Fractals 16 339 [4] Grigorenko I and Grigorenko E 2003 Phys. Rev. Lett. 91 034101 [5] Li C G and Chen G R 2004 Physica A 341 55 [6] Lu J G 2006 Chin. Phys. 15 0301 [7] Han Q, Liu C X, Sun L and Zhu D R 2013 Chin. Phys. B 22 020502 [8] Sun K H, Wang X and Sprott J C 2010 Int. J. Bifurcation Chaos Appl. Sci. Eng. 20 1209 [9] Letellier C and Aguirre L A 2013 Phys. Lett. A 377 1707 [10] Yang N N and Liu C X 2013 Nonlinear Dyn. 74 721 [11] Zhou P and Kuang F 2010 Acta Phys. Sin. 59 6981 (in Chinese) [12] Shao S Y, Min F H, Ma M L and Wang E R 2013 Acta Phys. Sin. 62 130504 (in Chinese) [13] Wang L M, Tang Y G, Chai Y Q and Wu F 2014 Chin. Phys. B 23 100501 [14] Xu Z, Liu C X and Yang T 2010 Acta Phys. Sin. 59 1524 (in Chinese) [15] Li H Q, Liao X F and Luo M W 2012 Nonlinear Dyn. 68 137 [16] Charef A, Sun H H, Tsao Y Y and Onaral B 1992 IEEE Trans. Autom. Control 37 1465
[1]
. [J]. 中国物理快报, 2022, 39(9): 94101-.
[2]
. [J]. 中国物理快报, 2017, 34(12): 120501-.
[3]
. [J]. 中国物理快报, 2016, 33(10): 100501-100501.
[4]
. [J]. 中国物理快报, 2016, 33(07): 70302-070302.
[5]
. [J]. 中国物理快报, 2013, 30(12): 120501-120501.
[6]
. [J]. 中国物理快报, 2013, 30(3): 30502-030502.
[7]
Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model [J]. 中国物理快报, 2012, 29(6): 60506-060506.
[8]
LI Xian-Feng**;Andrew Y. -T. Leung;CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model [J]. 中国物理快报, 2012, 29(1): 10201-010201.
[9]
WEI Du-Qu**;LUO Xiao-Shu;CHEN Hong-Bin;ZHANG Bo
. Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets [J]. 中国物理快报, 2011, 28(11): 110501-110501.
[10]
Eduardo L. Brugnago**;Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling [J]. 中国物理快报, 2011, 28(11): 110506-110506.
[11]
JI Ying**;BI Qin-Sheng
. SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation [J]. 中国物理快报, 2011, 28(9): 90201-090201.
[12]
WANG Xing-Yuan**;QIN Xue;XIE Yi-Xin
. Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map [J]. 中国物理快报, 2011, 28(8): 80501-080501.
[13]
CAO Qing-Jie;**;HAN Ning;TIAN Rui-Lan
. A Rotating Pendulum Linked by an Oblique Spring [J]. 中国物理快报, 2011, 28(6): 60502-060502.
[14]
YANG Yang;WANG Cang-Long;DUAN Wen-Shan**;CHEN Jian-Min
. Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry [J]. 中国物理快报, 2011, 28(3): 30503-030503.
[15]
Gabriela A. Casas**;Paulo C. Rech***
. Numerical Study of a Three-Dimensional Hénon Map [J]. 中国物理快报, 2011, 28(1): 10203-010203.