摘要We consider a three-dimensional generalization of the two-dimensional Hénon map. We first investigate the emergence of quasiperiodic states, as a result of Naimark–Sacker bifurcations of period-1 and period-2 orbits. Secondly we investigate the disappearance of the resonance torus in the transition from quasiperiodicity to chaos.
Abstract:We consider a three-dimensional generalization of the two-dimensional Hénon map. We first investigate the emergence of quasiperiodic states, as a result of Naimark–Sacker bifurcations of period-1 and period-2 orbits. Secondly we investigate the disappearance of the resonance torus in the transition from quasiperiodicity to chaos.
Gabriela A. Casas**;Paulo C. Rech***
. Numerical Study of a Three-Dimensional Hénon Map[J]. 中国物理快报, 2011, 28(1): 10203-010203.
Gabriela A. Casas**, Paulo C. Rech***
. Numerical Study of a Three-Dimensional Hénon Map. Chin. Phys. Lett., 2011, 28(1): 10203-010203.
[1] Hénon M 1976 Commun. Math. Phys. 50 69
[2] Hitzl D L and Zele F 1985 Physica D 14 305
[3] Li Y, Li B and Chen Y 2009 Int. J. Mod. Phys. C 20 597
[4] Xue Y J and Yang S Y 2003 Chaos Solitons & Fractals 17 717
[5] Yan Z 2005 Phys. Lett. A 342 309
[6] Grassi G and Miller D A 2002 IEEE Trans. Circuits Syst. I 49 373
[7] Yan Z 2005 Phys. Lett. A 343 423
[8] Wen G L and Xu D 2004 Phys. Lett. A 333 420
[9] Guckenheimer J and Holmes P 2002 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (New York: Springer) p 157
[10] Wiggins S 2003 Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springer) p 498
[11] Afraimovich V S and Shilnikov L P 1991 Am. Math. Soc. Transl. 149 201
[12] Gallas J A C 1993 Phys. Rev. Lett. 70 2714
[13] Schuster H G 2005 Deterministic Chaos: An Introduction (Weinheim: VCH) p 138
[14] Ogata K 1995 Discrete-Time Control Systems (Englewood Cliffs: Prentice Hall) p 185