摘要We extend a class of a one-dimensional smooth map. We make sure that for each desired interval of the parameter the map's Lyapunov exponent is positive. Then we propose a novel parameter perturbation method based on the good property of the extended one-dimensional smooth map. We perturb the parameter r in each iteration by the real number xi generated by the iteration. The auto-correlation function and NIST statistical test suite are taken to illustrate the method's randomness finally. We provide an application of this method in image encryption. Experiments show that the pseudo-random sequences are suitable for this application.
Abstract:We extend a class of a one-dimensional smooth map. We make sure that for each desired interval of the parameter the map's Lyapunov exponent is positive. Then we propose a novel parameter perturbation method based on the good property of the extended one-dimensional smooth map. We perturb the parameter r in each iteration by the real number xi generated by the iteration. The auto-correlation function and NIST statistical test suite are taken to illustrate the method's randomness finally. We provide an application of this method in image encryption. Experiments show that the pseudo-random sequences are suitable for this application.
WANG Xing-Yuan**;QIN Xue;XIE Yi-Xin
. Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. 中国物理快报, 2011, 28(8): 80501-080501.
WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin
. Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map. Chin. Phys. Lett., 2011, 28(8): 80501-080501.
[1] Kocarev L et al 2003 IEEE Trans. Circuits Syst. 50 123
[2] Larrondo H A et al 2006 Phys. Lett. A 352 421
[3] Wang X Y et al 2009 Commun. Nonlinear Sci. Numer. Simul. 14 574
[4] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[5] Pecora L M and Carroll T L 1991 Phys. Rev. A 44 2373
[6] Bateni H G et al 1994 IEEE Trans. Commun. 42 1524
[7] Robert M 1989 Cryptologia 13 29
[8] Wang X Y and Wang X J 2008 Int. J. Mod. Phys. C 9 5
[9] Ling C and Sun S G 1998 IEEE Trans. Commun. 46 1433
[10] Li P et al 2007 Chaos, Solitons Fractals 32 1867
[11] Fryska S T and Zohdy M 1992 Phys. Lett. A 166 340
[12] Cernak J 1996 Phys. Lett. A 214 151
[13] Ott E 2002 Chaos in Dynamical Systems (Cambridge: Cambridge University)
[14] Aguirregabiria J 2009 Chaos, Solitons Fractals 42 2531
[15] Singer D 1978 SIAM J. Appl. Math. 35 260
[16] Jackson E A 1991 Perspectives of Nonlinear Dynamics (Cambridge: Cambridge University)
[17] Zhou H and Ling X T 1997 Int. J. Bifurcation Chaos 7 205
[18] Li P et al 2007 Stud. Comput. Intell. 37 667
[19] Kohda T et al 1997 IEEE Trans. Inform. Theor. 43 105