A Parameter-Space Analysis of the Rikitake System
Rodrigo A. da Silva, Paulo C. Rech**
Departamento de Física, Universidade do Estado de Santa Catarina, 89219-710 Joinville, Brazil
Abstract :We investigate analytically and numerically the dynamics of the Rikitake system. The Routh–Hurwitz criterion is used to study the stability of the equilibrium points of the differential equation system model, as functions of two parameters. The dynamics of the model are numerically studied using diagrams that associate colors to the largest Lyapunov exponent value, in two-dimensional parameter spaces. Additionally, phase-space plots and bifurcation diagrams are used to distinguish periodic and chaotic attractors.
收稿日期: 2013-08-16
出版日期: 2013-12-13
:
05.45.-a
(Nonlinear dynamics and chaos)
05.45.Pq
(Numerical simulations of chaotic systems)
05.45.Ac
(Low-dimensional chaos)
[1] Glatzmaiers G A and Roberts P H 1995 Nature 377 203 [2] Rikitake T 1958 Proc. Cambridge Philos. Soc. 54 89 [3] Bullard E 1955 Proc. Cambridge Philos. Soc. 51 744 [4] Hardy Y and Steeb W H 1999 Int. J. Theor. Phys. 38 2413 [5] Llibre J and Messias M 2009 Physica D 238 241 [6] Braga D C, Dias F S and Mello L F 2010 Phys. Lett. A 374 4316 [7] Aguilar-Iba?ez C, Martinez-Guerra R, Aguilar-López R and Mata-Machuca J L 2010 Phys. Lett. A 374 3625 [8] Tudoran R M and G?rban A 2010 Nonlinear Anal. Real World Appl. 11 2888 [9] Tudoran R M 2011 Nonlinear Anal. Real World Appl. 12 2505 [10] Albuquerque H A, Rubinger R M and Rech P C 2008 Phys. Lett. A 372 4793 [11] Cardoso J C D, Albuquerque H A and Rubinger R M 2009 Phys. Lett. A 373 2050 [12] Stegemann C, Albuquerque H A and Rech P C 2010 Chaos 20 023103 [13] Mathias A C and Rech P C 2012 Chaos 22 043147 [14] Bonatto C, Gallas J A C and Ueda Y 2008 Phys. Rev. E 77 026217 [15] Medeiros E S, de Souza S L T, Medrano-T R O and Caldas I L 2010 Phys. Lett. A 374 2628 [16] Freire J G, Bonatto C, DaCamara C C and Gallas J A C 2008 Chaos 18 033121 [17] Testoni G E and Rech P C 2010 Int. J. Mod. Phys. C 21 973 [18] Slipantschuk J, Ullner E, Baptista M S, Zeineddine M and Thiel M 2010 Chaos 20 045117 [19] Nascimento M A, Gallas J A C and Varela H 2011 Phys. Chem. Chem. Phys. 13 441 [20] Kovanis V, Gavrielides A and Gallas J A C 2010 Eur. Phys. J. D 58 181 [21] Krüger T S and Rech P C 2012 Eur. Phys. J. D 66 12 [22] Linaro D, Poggi T and Storace M 2010 Phys. Lett. A 374 4589 [23] Rech P C 2011 Phys. Lett. A 375 1461 [24] Mathias A C and Rech P C 2012 Neural Networks 34 42 [25] Rech P C 2012 Chin. Phys. Lett. 29 060506 [26] Wiggins S 2003 Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springer) [27] Ito K 1980 Earth Planet. Sci. Lett. 51 451 [28] Lorenz E N 1963 J. Atmos. Sci. 20 130 [29] Boccaletti S, Kurths J, Osipov G, Valadares D L and Zhou C S 2002 Phys. Rep. 366 1
[1]
. [J]. 中国物理快报, 2022, 39(9): 94101-.
[2]
. [J]. 中国物理快报, 2021, 38(9): 90302-.
[3]
. [J]. 中国物理快报, 2020, 37(9): 90501-.
[4]
. [J]. 中国物理快报, 2020, 37(7): 74501-.
[5]
. [J]. 中国物理快报, 2019, 36(1): 14203-.
[6]
. [J]. 中国物理快报, 2018, 35(9): 90502-.
[7]
. [J]. 中国物理快报, 2017, 34(8): 80501-.
[8]
. [J]. 中国物理快报, 2017, 34(5): 50502-.
[9]
. [J]. 中国物理快报, 2016, 33(12): 120501-120501.
[10]
. [J]. 中国物理快报, 2016, 33(10): 100503-100503.
[11]
. [J]. 中国物理快报, 2015, 32(11): 118902-118902.
[12]
. [J]. 中国物理快报, 2015, 32(09): 97401-097401.
[13]
. [J]. 中国物理快报, 2015, 32(5): 50501-050501.
[14]
. [J]. 中国物理快报, 2015, 32(4): 40502-040502.
[15]
. [J]. 中国物理快报, 2015, 32(4): 47402-047402.