摘要We study a pair of nonlinearly coupled identical chaotic sine square maps. More specifically, we investigate the chaos suppression associated with the variation of two parameters. Two-dimensional parameter-space regions where the chaotic dynamics of the individual chaotic sine square map is driven towards regular dynamics are delimited. Additionally, the dynamics of the coupled system is numerically characterized as the parameters are changed.
Abstract:We study a pair of nonlinearly coupled identical chaotic sine square maps. More specifically, we investigate the chaos suppression associated with the variation of two parameters. Two-dimensional parameter-space regions where the chaotic dynamics of the individual chaotic sine square map is driven towards regular dynamics are delimited. Additionally, the dynamics of the coupled system is numerically characterized as the parameters are changed.
Eduardo L. Brugnago**;Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling[J]. 中国物理快报, 2011, 28(11): 110506-110506.
Eduardo L. Brugnago**, Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling. Chin. Phys. Lett., 2011, 28(11): 110506-110506.
[1] Iglesias A, Gutiérrez J M, Güémez J and Matí as M A 1996 Chaos Solitons Fractals 7 1305[2] Hénon M 1976 Commun. Math. Phys. 50 69[3] Whitehead R R and MacDonald N 1984 Physica D 13 401[4] Osipov V, Glatz L and Troger H 1998 Chaos Solitons Fractals 9 307[5] Guckenheimer J and Holmes P 2002 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (New York: Springer) p 173[6] Patidar V, Pareek N K and Sud K K 2002 Phys. Lett. A 304 121[7] Choe C U, Höhne K, Benner H and Kivshar Y S 2005 Phys. Rev. E 72 036206[8] Zheng Y H, Lu Q S and Wang Q Y 2006 Chin. Phys. Lett. 23 3176[9] Rajesh S, Sinha S and Sinha S 2007 Phys. Rev. E 75 011906[10] Bragard J, Vidal G, Mancini H, Mendoza C and Boccaletti S 2007 Chaos 17 043107[11] Rech P C 2008 Phys. Lett. A 372 4434[12] Casas G A and Rech P C 2010 Int. J. Bifurcation Chaos Appl. Sci. Eng. 20 153[13] Xu J, Long K -P, Fournier-Prunaret D, Taha A -K and Charge P 2010 Chin. Phys. Lett. 27 020504[14] Xu J, Long K -P, Fournier-Prunaret D, Taha A -K and Charge P 2010 Chin. Phys. Lett. 27 080506[15] Wiggins S 2003 Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springer) p 517[16] Schuster H G 2005 Deterministic chaos: An introduction (Weinheim: VCH) p 137[17] Casas G A and Rech P C 2011 Chin. Phys. Lett. 28 010203