Electronic Transport of the Adsorbed Trigonal Graphene Flake: A First Principles Calculation
TAN Xun-Qiong**
School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114
Abstract :Based on the non-equilibrium Green's function method combined with the density functional theory, we investigate the transport properties of a zigzag trigonal graphene flake (zTGF) adsorbed by a single atom (F or H) or a single group (OH or CH3 ) at the central site and connected to two symmetric Au electrodes by Au–S bonds. The results show that the OH adsorption can enhance the conductance, followed by the negative differential resistance effects, while the conductance for the zTGF adsorbed by H and CH3 is lowered obviously, and rectifying characteristics can be observed for the H-adsorbed system. The adsorbing action alters the molecular level position and the spatial distribution of the molecular orbital, leading to different transport properties.
出版日期: 2015-01-12
:
73.23.-b
(Electronic transport in mesoscopic systems)
72.10.-d
(Theory of electronic transport; scattering mechanisms)
85.65.+h
(Molecular electronic devices)
[1] Tans S J, Verschueren A R M and Dekker C 1998 Nature 393 49 [2] Smit R H M, Noat Y, Untiedt C, Lang N D, Hemert M C and Ruitenbeek J M 2002 Nature 419 906 [3] Chen J, Reed M A, Rawlett A M and Tour J M 1999 Science 286 1550 [4] Zheng J M, Guo P, Ren Z, Jiang Z, Bai J and Zhang Z 2012 Appl. Phys. Lett. 101 083101 [5] Fan Z Q, Zhang Z H, Qiu M, Deng X Q and Tang G P 2012 Chin. Phys. Lett. 29 077305 [6] Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q and Fan Z Q 2013 Adv. Funct. Mater. 23 2765 [7] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [8] Deng X Q, Zhang Z H, Tang G P, Fan Z Q and Qiu M 2012 Appl. Phys. Lett. 100 063107 [9] Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S and Geim A K 2008 Science 320 356 [10] Wang X R, Ouyang Y J, Li X L, Wang H L, Guo J and Dai H J 2008 Phys. Rev. Lett. 100 206803 [11] Elias D C,. Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610 [12] Leenaerts O, Sahin H, Partoens B and Peeters F M 2013 Phys. Rev. B 88 035434 [13] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610 [14] Withers F, Dubois M and Savchenko A K 2010 Phys. Rev. B 82 073403 [15] Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T and Ruoff R S 2007 Nature 448 457 [16] Wang W L, Meng S and Kaxiras E 2008 Nano Lett. 8 241 [17] Yazyev O V, Wang W L, Meng S and Kaxiras E 2008 Nano Lett. 8 766 [18] Zhang Z H, Zhang J J, Kwong G, Li, Fan Z Q, Deng X Q and Tang G P 2013 Sci. Rep. 3 2575 [19] Rossier J F and Palacios J J 2007 Phys. Rev. Lett. 99 177204 [20] Sheng W, Ning Z Y, Yang Z Q and Guo H 2010 Nanotechnology 21 385201 [21] Ezawa M 2006 Phys. Rev. B 73 045432 [22] Singh A K and Penev E S and Yakobson B I 2010 ACS Nano 4 3510 [23] Hod O, Barone V and Cuseria S G E 2008 Phys. Rev. B 77 035411 [24] Zhang Z H, Yang Z, Yuan J H, Zhang H, Deng X Q and Qiu M 2008 J. Chem. Phys. 129 094702 [25] Buttiker M and Landauer R 1985 Phys. Rev. B 31 6207 [26] Deng X Q, Yang C H and Zhang H L 2013 Acta Phys. Sin. 62 186102 (in Chinese)
[1]
. [J]. 中国物理快报, 2021, 38(7): 77303-.
[2]
. [J]. 中国物理快报, 2020, 37(4): 47301-.
[3]
. [J]. 中国物理快报, 2019, 36(4): 47101-.
[4]
. [J]. 中国物理快报, 2019, 36(1): 17301-.
[5]
. [J]. 中国物理快报, 2018, 35(10): 107201-.
[6]
. [J]. 中国物理快报, 2018, 35(9): 97301-.
[7]
. [J]. 中国物理快报, 2018, 35(7): 77301-.
[8]
. [J]. 中国物理快报, 2018, 35(6): 67101-.
[9]
. [J]. 中国物理快报, 2018, 35(4): 48501-.
[10]
. [J]. 中国物理快报, 2018, 35(1): 17201-.
[11]
. [J]. 中国物理快报, 2017, 34(10): 107301-.
[12]
. [J]. 中国物理快报, 2017, 34(8): 87301-.
[13]
. [J]. 中国物理快报, 2017, 34(6): 67301-.
[14]
. [J]. 中国物理快报, 2017, 34(5): 57201-.
[15]
. [J]. 中国物理快报, 2017, 34(4): 47302-047302.