Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons
Yang Liu, Cai-Juan Xia** , Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu
School of Science, Xi'an Polytechnic University, Xi'an 710048
Abstract :The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons (AGNRs) with different widths are investigated by applying the non-equilibrium Green's function formalism combined with first-principles density functional theory. The calculated results show that the width and doping play significant roles in the electronic transport properties of the molecular junction. A higher current can be obtained for the molecular junctions with the tailoring AGNRs with $W=11$. Furthermore, the current of boron-doped tailoring AGNRs with widths $W=7$ is nearly four times larger than that of the undoped one, which can be potentially useful for the design of high performance electronic devices.
收稿日期: 2018-01-22
出版日期: 2018-05-19
:
71.15.Mb
(Density functional theory, local density approximation, gradient and other corrections)
73.23.-b
(Electronic transport in mesoscopic systems)
85.65.+h
(Molecular electronic devices)
[1] Husain M M and Kumar M 2015 Org. Electron. 27 92 [2] Ji G M, Li D M, Fang C F, Xu Y Q, Zhai Y X, Cui B and Liu D S 2012 Phys. Lett. A 376 773 [3] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N and Heer W A D 2006 Science 312 1191 [4] Du X, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotechnol. 3 491 [5] Orlita M, Faugeras C, Plochocka P, Neugebauer P, Martinez G, Maude D K, Barra A L, Sprinkle M, Berger C, Heer W A D and Potemski M 2008 Phys. Rev. Lett. 101 267601 [6] Neugebauer P, Orlita M, Faugeras C, Barra A L and Potemski M 2009 Phys. Rev. Lett. 103 159902 [7] Ahmed S and Yi J B 2017 Nano-Micro Lett. 9 699 [8] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 [9] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stromer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379 [10] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubbnos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [11] Han M Y, Özyilmaz B, Zhang Y B and Kim P 2007 Phys. Rev. Lett. 98 206805 [12] Niimi Y, Matsui T, Kambara H, Tagami K, Tsukada M and Fukuyama H 2006 Phys. Rev. B 73 085421 [13] Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954 [14] Chen Y P, Xie Y E and Yan X H 2008 J. Appl. Phys. 103 063711 [15] Zheng H X, Wang Z F, Luo T, Shi Q W and Chen J 2007 Phys. Rev. B 75 165414 [16] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803 [17] Cai Y Q, Zhang A H, Feng A P and Feng Y P 2011 J. Chem. Phys. 135 184703 [18] Long M Q, Tang L, Wang D, Wang L J and Shuai Z G 2009 J. Am. Chem. Soc. 131 17728 [19] Xie L, Chen S Z, Zhou W X and Chen K Q 2017 Org. Electron. 46 150 [20] Xie F, Fan Z Q, Liu K, Wang H Y, Yu J H and Chen K Q 2015 Org. Electron. 27 41 [21] He J and Chen K Q 2012 J. Appl. Phys. 112 114319 [22] Zeng J and Chen K Q 2015 J. Mater. Chem. C 3 5697 [23] Song Y, Xie Z, Zhang G P, Ma Y and Wang C K 2013 J. Phys. Chem. C 117 20951 [24] Ye M, Xia C J, Yang A Y, Zhang B Q, Su Y H, Tu Z Y and Ma Y 2017 Chin. Phys. Lett. 34 117101 [25] Huang J, Xu K, Lei S L, Su H B, Yang S F, Li Q X and Yang J L 2012 J. Chem. Phys. 136 064707 [26] Song Y, Xie Z, Ma Y, Li Z L and Wang C K 2014 J. Phys. Chem. C 118 18713 [27] Zhang D H, Yao K L and Gao G Y 2011 J. Appl. Phys. 110 013718 [28] Ren H, Li Q X, Luo Y and Yang J L 2009 Appl. Phys. Lett. 94 173110 [29] Zhao P, Liu D S, Li S J and Chen G 2013 Phys. Lett. A 377 1134 [30] Zhu S C, Yao K L, Gao G Y and Ni Y 2013 Solid State Commun. 155 40 [31] Solís-Fernández P, Okada S, Sato T, Tsuji M and Ago H 2016 ACS Nano 10 2930 [32] Xu J, Jang S K, Lee J, Song Y J and Lee S 2014 J. Phys. Chem. C 118 22268 [33] Guo X S, Lu B A and Xie E Q 2011 Chin. Phys. Lett. 28 076803 [34] Błoníski P, Tuček J, Sofer Z, Mazaínek V, Petr M, Pumera M, Otyepka M and Zbořil R 2017 J. Am. Chem. Soc. 139 3171 [35] Yang R, Zhang L C, Wang Y, Shi Z W, Shi D X, Gao H J, Wang E G and Zhang G Y 2010 Adv. Mater. 22 4014 [36] Jin C H, Lan H P, Peng L M, Suenaga K and Iijima S 2009 Phys. Rev. Lett. 102 205501 [37] Li X L, Wang X R, Zhang L, Lee S and Dai G J 2008 Science 319 1229 [38] Zhang C Z, Mahmood N, Yin H, Liu F and Hou Y L 2013 Adv. Mater. 25 4932 [39] Zheng Y, Jiao Y, Ge L, Jaroniec M and Qiao S Z 2013 Angew. Chem. 125 3192 [40] Zeng J, Chen K Q, He J, Fan Z Q and Zhang X J 2011 J. Appl. Phys. 109 124502 [41] Atomistix Toolkit version 2008 02. Quantum Wise A/S (www.quantumwise.com) [42] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401 [43] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407 [44] Buttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[1]
. [J]. 中国物理快报, 2023, 40(2): 27101-027101.
[2]
. [J]. 中国物理快报, 2022, 39(11): 117501-.
[3]
. [J]. 中国物理快报, 2022, 39(8): 87101-.
[4]
. [J]. 中国物理快报, 2022, 39(4): 47401-.
[5]
. [J]. 中国物理快报, 2021, 38(8): 87103-087103.
[6]
. [J]. 中国物理快报, 2021, 38(7): 77101-.
[7]
. [J]. 中国物理快报, 2021, 38(6): 66801-.
[8]
. [J]. 中国物理快报, 2021, 38(6): 68103-.
[9]
. [J]. 中国物理快报, 2021, 38(5): 50701-.
[10]
. [J]. 中国物理快报, 2021, 38(2): 27401-.
[11]
. [J]. 中国物理快报, 2020, 37(12): 127101-.
[12]
. [J]. 中国物理快报, 2021, 38(1): 17302-.
[13]
. [J]. 中国物理快报, 2020, 37(10): 107101-.
[14]
. [J]. 中国物理快报, 2020, 37(9): 97402-.
[15]
. [J]. 中国物理快报, 2020, 37(4): 47101-.