Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes
Meng Ye, Cai-Juan Xia** , Bo-Qun Zhang, Yue Ma
School of Science, Xi'an Polytechnic University, Xi'an 710048
Abstract :Based on nonequilibrium Green's function method in combination with density functional theory, we study the electronic transport properties of dipyrimidinyl-diphenyl molecules embedded in a carbon atomic chain sandwiched between zigzag graphene nanoribbon and different edge geometries C$_{2}$N-$h$2D electrodes. Compared with the graphene electrodes, the C$_{2}$N-$h$2D electrode can cause rectifying and negative differential resistance effects. For C$_{2}$N-$h$2D with zigzag edges, a more remarkable negative differential resistance phenomenon appears, whereas armchair-edged C$_{2}$N-$h$2D can give rise to much better rectifying behavior. These results suggest that this system can be potentially useful for designs of logic and memory devices.
收稿日期: 2018-12-24
出版日期: 2019-03-23
:
71.15.Mb
(Density functional theory, local density approximation, gradient and other corrections)
73.23.-b
(Electronic transport in mesoscopic systems)
85.65.+h
(Molecular electronic devices)
[1] Huang J, Xu K, Lei S L, Su H B, Yang S F, Li Q X and Yang J L 2012 J. Chem. Phys. 136 064707 [2] He Y D, Dong H L, Li T, Wang C L, Shao W, Zhang Y J, Jiang L and Hu W P 2010 Appl. Phys. Lett. 97 133301 [3] Areshkin D A, Gunlycke D and White C T 2007 Nano Lett. 7 204 [4] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [5] Guo X S, Lu B A and Xie E Q 2011 Chin. Phys. Lett. 28 076803 [6] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [7] Deretzis I, Fiori G, Iannaccone G and La A 2010 Phys. Rev. B 81 085427 [8] He J J, Guo Y D and Yan X H 2017 Sci. Rep. 7 43922 [9] Zhang R Q, Li B and Yang J 2015 Nanoscale 7 14062 [10] Schwierz F 2010 Nat. Nanotechnol. 5 487 [11] Liao L, Lin Y C, Bao M Q, Cheng R, Bai J W, Liu Y, Qu Y Q, Wang K L, Huang Y and Duan X F 2010 Nature 467 305 [12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 [13] Li J, Yang S Y and Li S S 2015 Chin. Phys. Lett. 32 077102 [14] Liu Y, Xia C J, Zhang B Q, Zhang T T, Cui Y and Hu Z Y 2018 Chin. Phys. Lett. 35 067101 [15] Mahmood J, Lee E K, Jung M, Shin D, Jeon I Y, Jung S M, Choi H J, Seo J M, Bae S Y, Sohn S D, Park N, Oh J H, Shin H J and Baek J B 2015 Nat. Commun. 6 6486 [16] Sahin H 2015 Phys. Rev. B 92 085421 [17] He J J, Guo Y D, Yan X H and Zeng H L 2018 Physica B 528 1 [18] Song Y, Xie Z, Zhang G P, Ma Y and Wang C K 2013 Phys. Chem. C 117 20951 [19] Zhang G P, Hu G C, Li Z L and Wang C K 2011 Chin. Phys. B 20 127304 [20] Li J C and Gong X 2013 Org. Electron. 14 2451 [21] Ye M, Xia C J, Yang A Y, Zhang B Q, Su Y H, Tu Z Y and Ma Y 2017 Chin. Phys. Lett. 34 117101 [22] Song Y, Bao D L, Xie Z, Zhang G P and Wang C K 2013 Phys. Lett. A 377 3228 [23] Brandbyge M, Mozos J L, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401 [24] Monkhorst H and Pack J 1976 Phys. Rev. B 13 5188
[1]
. [J]. 中国物理快报, 2023, 40(2): 27101-027101.
[2]
. [J]. 中国物理快报, 2022, 39(11): 117501-.
[3]
. [J]. 中国物理快报, 2022, 39(8): 87101-.
[4]
. [J]. 中国物理快报, 2022, 39(4): 47401-.
[5]
. [J]. 中国物理快报, 2021, 38(8): 87103-087103.
[6]
. [J]. 中国物理快报, 2021, 38(7): 77101-.
[7]
. [J]. 中国物理快报, 2021, 38(6): 66801-.
[8]
. [J]. 中国物理快报, 2021, 38(6): 68103-.
[9]
. [J]. 中国物理快报, 2021, 38(5): 50701-.
[10]
. [J]. 中国物理快报, 2021, 38(2): 27401-.
[11]
. [J]. 中国物理快报, 2020, 37(12): 127101-.
[12]
. [J]. 中国物理快报, 2021, 38(1): 17302-.
[13]
. [J]. 中国物理快报, 2020, 37(10): 107101-.
[14]
. [J]. 中国物理快报, 2020, 37(9): 97402-.
[15]
. [J]. 中国物理快报, 2020, 37(4): 47101-.