Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons
Yu-Zhuo LV, Peng ZHAO**
School of Physics and Technology, University of Jinan, Jinan 250022
Abstract :Using density functional theory combined with non-equilibrium Green's function method, we investigate the spin caloritronic transport properties of tree-saw graphene nanoribbons. These systems have stable ferromagnetic ground states with a high Curie temperature that is far above room temperature and exhibit obvious spin-Seebeck effect. Moreover, thermal colossal magnetoresistance up to 10$^{20}$% can be achieved by the external magnetic field modulation. The underlying mechanism is analyzed by spin-resolved transmission spectra, current spectra and band structures.
收稿日期: 2018-08-13
出版日期: 2018-12-25
:
73.23.-b
(Electronic transport in mesoscopic systems)
85.65.+h
(Molecular electronic devices)
71.15.Mb
(Density functional theory, local density approximation, gradient and other corrections)
[1] Goennenwein S T B and Bauer G E W 2012 Nat. Nanotechnol. 7 145 [2] Bauer G E W, Saitoh E and van Wees B J 2012 Nat. Mater. 11 391 [3] Jeon K R, Min B C, Spiesser A, Saito H, Shin S C, Yuasa S and Jansen R 2014 Nat. Mater. 13 360 [4] Chang P H, Bahramy M S, Nagaosa N and Nikolić B K 2014 Nano Lett. 14 3779 [5] Johnson M and Silsbee R H 1987 Phys. Rev. B 35 4959 [6] Johnson M and Silsbee R H 1988 Phys. Rev. B 37 5326 [7] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778 [8] Zeng M, Feng Y and Liang G 2011 Nano Lett. 11 1369 [9] Ni Y, Yao K, Fu H, Gao G, Zhu S and Wang S 2013 Sci. Rep. 3 1380 [10] Huang H, Zheng A, Gao G and Yao K 2018 J. Magn. Magn. Mater. 449 522 [11] Tang X Q, Ye X M, Tan X Y and Ren D H 2018 Sci. Rep. 8 927 [12] Yu D, Lupton E M, Gao H J, Zhang C and Liu F 2008 Nano Res. 1 497 [13] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 121104(R) [14] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407(R) [15] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401 [16] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745 [17] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [18] Troullier N and Martins J 1991 Phys. Rev. B 43 1993 [19] Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207 [20] Zhang J, Li X and Yang J 2014 Appl. Phys. Lett. 104 172403 [21] Kim W Y and Kim K S 2008 Nat. Nanotechnol. 3 408 [22] Cho W J, Cho Y, Min S K, Kim W Y and Kim K S 1993 J. Am. Chem. Soc. 115 9389 [23] Zhang Y T, Jiang H, Sun Q F and Xie X C 2010 Phys. Rev. B 81 165404
[1]
. [J]. 中国物理快报, 2021, 38(7): 77303-.
[2]
. [J]. 中国物理快报, 2020, 37(4): 47301-.
[3]
. [J]. 中国物理快报, 2019, 36(4): 47101-.
[4]
. [J]. 中国物理快报, 2018, 35(10): 107201-.
[5]
. [J]. 中国物理快报, 2018, 35(9): 97301-.
[6]
. [J]. 中国物理快报, 2018, 35(7): 77301-.
[7]
. [J]. 中国物理快报, 2018, 35(6): 67101-.
[8]
. [J]. 中国物理快报, 2018, 35(4): 48501-.
[9]
. [J]. 中国物理快报, 2018, 35(1): 17201-.
[10]
. [J]. 中国物理快报, 2017, 34(10): 107301-.
[11]
. [J]. 中国物理快报, 2017, 34(8): 87301-.
[12]
. [J]. 中国物理快报, 2017, 34(6): 67301-.
[13]
. [J]. 中国物理快报, 2017, 34(5): 57201-.
[14]
. [J]. 中国物理快报, 2017, 34(4): 47302-047302.
[15]
. [J]. 中国物理快报, 2017, 34(2): 27201-027201.