Growth of Self-Catalyzed InP Nanowires by Metalorganic Chemical Vapour Deposition
LV Xiao-Long, ZHANG Xia** , YAN Xin, LIU Xiao-Long, CUI Jian-Gong, LI Jun-Shuai, HUANG Yong-Qing, REN Xiao-Min
State Key Laboratory of Information Photonics & Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876
Abstract :The fabrication of self-catalyzed InP nanowires (NWs) is investigated under different growth conditions. Indium droplets induced by surface reconstruction act as nucleation sites for NW growth. Vertical standing NWs with uniform cross sections are obtained under optimized conditions. It is confirmed that the growth rate of NWs is strongly affected by the surface diffusion adatoms while contributions from the direct impingement of vapor species onto the In droplets can be negligible. The results indicate that the droplet acts as an adatom collector rather than a catalyst. Moreover, the diffusion flow rate of adatoms increases with time at the beginning of growth and stabilizes as the growth proceeds.
收稿日期: 2012-08-23
出版日期: 2013-03-04
:
61.46.Hk
(Nanocrystals)
68.37.Lp
(Transmission electron microscopy (TEM))
61.46.Km
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
引用本文:
. [J]. Chin. Phys. Lett., 2012, 29(12): 126102-126102.
LV Xiao-Long, ZHANG Xia, YAN Xin, LIU Xiao-Long, CUI Jian-Gong, LI Jun-Shuai, HUANG Yong-Qing, REN Xiao-Min. Growth of Self-Catalyzed InP Nanowires by Metalorganic Chemical Vapour Deposition. Chin. Phys. Lett., 2012, 29(12): 126102-126102.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/29/12/126102
或
https://cpl.iphy.ac.cn/CN/Y2012/V29/I12/126102
[1] Thelander C, Agarwal P, Brongersma S, Eymery J, Feiner L F, Forchel A, Scheffler M, Riess W, Ohlsson B J, Gosele U and Samuelson L 2006 Mater. Today 9 28 [2] Fan H J, Werner P and Zacharias M 2006 Small 2 700 [3] Wang J, Gudiksen M S, Duan X, Cui Y and Liber C M 2001 Science 293 1455 [4] Czaban J A, Thompson D A and Lapierre P R 2009 Nano Lett. 9 148 [5] Hua B, Motohisa Kobayashi J Y, Hara S and Fukui T 2009 Nano Lett. 9 112 [6] Mattila M, Hakkarainen T, Mulot M and Lipsanen H 2006 Nanotechnology 17 1580 [7] Boles S T, Thompson C V and Fitzgerald E A 2009 J. Cryst. Growth 311 1446 [8] Dalacu D, Kam A, Austing D G, Wu X H, Lapointe J, Aers G C and Poole P J 2009 Nanotechnology 20 395602 [9] Woo R L, Gao L, Goel N, Hudait M K, Wang K L, Kodambaka S and Hicks R F 2009 Nano Lett. 9 2207 [10] Wagner R S and Ellis W C 1964 Appl. Phys. Lett. 4 89 [11] Givargizov E I 1975 J. Cryst. Growth 31 20 [12] Dubrovskii V G and Sibirev N V 2004 Phys. Rev. E 70 031604 [13] Kashchiev D 2006 Cryst. Growth Des. 6 1154 [14] Avramov I 2007 Nanoscale Res. Lett. 2 235 [15] Dubrovskii V G, Cirlin G E, Soshnikov I P, Tonkikh A A, Sibirev N V, Samsonenko Y B and Ustinov V M 2005 Phys. Rev. B 71 205325 [16] Seifert W et al 2004 J. Cryst. Growth 272 211 [17] Moewe M, Chuang L C, Dubrovskii V G and Hasnain C C 2008 J. Appl. Phys. 104 044313 [18] Harmand J C, Patriarche G, Laperne N P, Combes M N M, Travers L and Glas F 2005 Appl. Phys. Lett. 87 203101 [19] Plante M C and LaPierre R R 2008 J. Cryst. Growth 310 356 [20] Nebolsin V A and Shchetinin A A 2003 Inorg. Mater. 39 899 [21] Dubrovskii V G, Cirlin G E, Sibirev N V, Jabeen F, Harmand J C and Werner P 2011 Nano Lett. 11 1247 [22] Krogstrup P, Curiotto S, Johnson E, Aagesen M, Nygard J and Chatain D 2011 Phys. Rev. Lett. 106 125505 [23] Novotny C J and Yu P K L 2005 Appl. Phys. Lett. 87 203111 [24] Dubrovskii V G, Sibirev N V, Suris R A, Cirlin G E, Ustinov V M, Tchernysheva M and Harmand J C 2006 Semiconductors 40 1075
[1]
. [J]. 中国物理快报, 2017, 34(6): 68103-.
[2]
. [J]. 中国物理快报, 2014, 31(12): 127501-127501.
[3]
. [J]. 中国物理快报, 2014, 31(04): 47801-047801.
[4]
. [J]. Chin. Phys. Lett., 2013, 30(3): 38101-038101.
[5]
. [J]. Chin. Phys. Lett., 2012, 29(12): 126101-126101.
[6]
. [J]. 中国物理快报, 2012, 29(10): 106103-106103.
[7]
Murtaza Saleem**;Saadat A. Siddiqi;Shahid Atiq;M. Sabieh Anwar
. Structural and Magnetic Studies of Zn0.95 Co0.05 O and Zn0.90 Co0.05 Al0.05 O [J]. 中国物理快报, 2011, 28(11): 116103-116103.
[8]
GUO Jing-Wei**;HUANG Hui;REN Xiao-Min;YAN Xin;CAI Shi-Wei;GUO Xin;HUANG Yong-Qing;WANG Qi;ZHANG Xia;WANG Wei
. Growth of Zinc Blende GaAs/AlGaAs Radial Heterostructure Nanowires by a Two-Temperature Process [J]. 中国物理快报, 2011, 28(3): 36101-036101.
[9]
ZHANG Xian-Gao;CHEN Kun-Ji;FANG Zhong-Hui;QIAN Xin-Ye;LIU Guang-Yuan;JIANG Xiao-Fan;MA Zhong-Yuan;XU Jun;HUANG Xin-Fan;JI Jian-Xin;HE Fei;SONG Kuang-Bao;ZHANG Jun;WAN Hui;WANG Rong-Hua. Discrete Charge Storage Nonvolatile Memory Based on Si Nanocrystals with Nitridation Treatment [J]. 中国物理快报, 2010, 27(8): 87301-087301.
[10]
YE Xian;HUANG Hui;REN Xiao-Min;YANG Yi-Su;GUO Jing-Wei;HUANG Yong-Qing;WANG Qi. Growth of Pure Zinc Blende GaAs Nanowires: Effect of Size and Density of Au Nanoparticles [J]. 中国物理快报, 2010, 27(4): 46101-046101.
[11]
MAO Ping;ZHANG Zhi-Gang;PAN Li-Yang;XU Jun;CHEN Pei-Yi. Nonvolatile Memory Characteristics with Embedded High Density Ruthenium Nanocrystals [J]. 中国物理快报, 2009, 26(5): 56104-056104.
[12]
MAO Ping;ZHANG Zhi-Gang;PAN Li-Yang;XU Jun;CHEN Pei-Yi. High-Density Stacked Ru Nanocrystals for Nonvolatile Memory Application [J]. 中国物理快报, 2009, 26(4): 46102-046102.
[13]
LI Ping-Yun;CAO Zhen-Hua;ZHANG Xi-Yan;WU Xiao-Lei;HUANG Yi-Neng;MENG Xiang-Kang. Curie Transition of NC Nickel by Mechanical Spectroscopy and Magnetization Study [J]. 中国物理快报, 2009, 26(3): 36102-036102.
[14]
S. Duhan;P. Aghamkar;. Interfacial Reactions and Cubic Neodymium Oxide Formation in Low Dispersed Nd2 O3 -SiO2 System by Wet Chemical Method [J]. 中国物理快报, 2009, 26(1): 16106-016106.
[15]
HUANG Wei;CHI Ying-Zhi;WANG Xi;ZHOU Shi-Feng;WANG Li;WUE;ZENG He-Ping;QIU Jian-Rong. Tunable Infrared Luminescence and Optical Amplification in PbS Doped Glasses [J]. 中国物理快报, 2008, 25(7): 2518-2520.