摘要Ruthenium (Ru) nanocrystals (NCs) embedded in SiO2 gate stacks are formed by rapid thermal annealing for the whole gate stacks and embedded in the memory structure, which is compatible with conventional CMOS technology. The devices exhibit a substantial and clockwise hysteresis in capacitance-voltage measurement. The Ru NCs exhibit high density (2×1012cm-2), small size (2-4nm) and good uniformity both in spatial distribution and morphology. The charging and long-term retention performances are explained by the Coulomb Blockade phenomena and the asymmetric electron tunnel barrier between the Ru NCs and the Si substrate, respectively.
Abstract:Ruthenium (Ru) nanocrystals (NCs) embedded in SiO2 gate stacks are formed by rapid thermal annealing for the whole gate stacks and embedded in the memory structure, which is compatible with conventional CMOS technology. The devices exhibit a substantial and clockwise hysteresis in capacitance-voltage measurement. The Ru NCs exhibit high density (2×1012cm-2), small size (2-4nm) and good uniformity both in spatial distribution and morphology. The charging and long-term retention performances are explained by the Coulomb Blockade phenomena and the asymmetric electron tunnel barrier between the Ru NCs and the Si substrate, respectively.
MAO Ping;ZHANG Zhi-Gang;PAN Li-Yang;XU Jun;CHEN Pei-Yi. Nonvolatile Memory Characteristics with Embedded High Density Ruthenium Nanocrystals[J]. 中国物理快报, 2009, 26(5): 56104-056104.
MAO Ping, ZHANG Zhi-Gang, PAN Li-Yang, XU Jun, CHEN Pei-Yi. Nonvolatile Memory Characteristics with Embedded High Density Ruthenium Nanocrystals. Chin. Phys. Lett., 2009, 26(5): 56104-056104.
[1] Tiwari S et al 1996 Appl. Phys. Lett. 68 1377 [2] Hanafi H I, Tiwari S and Khan I 1996 IEEE Trans.Electron Devices 43 1553 [3] Lu T Z et al 2006 J. Appl. Phys. 100 014310 [4] Wan Q et al 2003 Appl. Phys. Lett. 82 4708 [5] Shi Y et al 1998 J. Appl. Phys. 84 2358. [6] Liu Z T et al 2002 IEEE Trans. Electron Devices 49 1606 [7] Dufourcq J et al 2008 Appl. Phys. Lett. 92073102 [8] Samanta S K et al 2005 Appl. Phys. Lett. 87113110 [9] Zhong H, Heuss H and Misra V 2000 IEEE ElectronDevice Lett. 21 593 [10] Pantisano L et al 2006 Appl. Phys. Lett. 88243514 [11] Kolawa E et al 1987 Appl. Phys. Lett. 50 854 [12] Zhang M et al 2007 J. Vac. Sci. Technol. A 25 775 [13] Wang S Q et al 1995 J. Appl. Phys. 77 5751 [14] Chen Z Q et al 2004 Phys. Status Solidi B 241 2253 [15] Sah C T 1990 Solid-State Electron. 33 147 [16] Lee C et al 2005 IEEE Electron Device Lett. 26 879 [17] Teo L W et al 2002 Appl. Phys. Lett. 81 3639