1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, PO Box 800-204, Shanghai 201800 2Graduate University of the Chinese Academy of Sciences, Beijing 100049
Charge and Mass Effects on Low Energy Ion Channeling in Carbon Nanotubes
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, PO Box 800-204, Shanghai 201800 2Graduate University of the Chinese Academy of Sciences, Beijing 100049
摘要Channeling phenomena of He, Ne, Ar and Kr ions at energy (200–5000 eV) in single-wall carbon nanotubes (SWCNTs) are investigated by molecular dynamics simulation with analytical potentials. The critical angles for the particles to be channeled in an SWCNT are analyzed. In the incident energy range of 200–5000 eV, it is found that the ion energy dependence of the critical angle obeys an improved Lindhard equation which is closely related to the ratio of nuclear charge number to atomic mass Z/M. The critical angle for different types of ions channeling in SWCNTs is determined by both the atomic nuclear charge and mass.
Abstract:Channeling phenomena of He, Ne, Ar and Kr ions at energy (200–5000 eV) in single-wall carbon nanotubes (SWCNTs) are investigated by molecular dynamics simulation with analytical potentials. The critical angles for the particles to be channeled in an SWCNT are analyzed. In the incident energy range of 200–5000 eV, it is found that the ion energy dependence of the critical angle obeys an improved Lindhard equation which is closely related to the ratio of nuclear charge number to atomic mass Z/M. The critical angle for different types of ions channeling in SWCNTs is determined by both the atomic nuclear charge and mass.
(Channeling phenomena (blocking, energy loss, etc.) ?)
引用本文:
LI Yong;ZHENG Li-Ping;ZHANG Wei**;XU Zi-Jian**;REN Cui-Lan;HUAI Ping;ZHU Zhi-Yuan
. Charge and Mass Effects on Low Energy Ion Channeling in Carbon Nanotubes[J]. 中国物理快报, 2011, 28(6): 66101-066101.
LI Yong, ZHENG Li-Ping, ZHANG Wei**, XU Zi-Jian**, REN Cui-Lan, HUAI Ping, ZHU Zhi-Yuan
. Charge and Mass Effects on Low Energy Ion Channeling in Carbon Nanotubes. Chin. Phys. Lett., 2011, 28(6): 66101-066101.
[1] Iijima S 1991 Nature 354 56
[2] Klimov V V and Letokhov V S 1996 Phys. Lett. A 222 424
[3] Gevorgyan L A, Ispiryan K A and Ispiryan R K 1997 JETP Lett. 66 322
[4] Dedkov G V 1998 Nucl. Instr. and Meth. B 143 584
[5] Zhevago N K and Glebov V I 1998 Phys. Lett. A 250 360
[6] Zhevago N K and Glebov V I 2000 JETP 91 504
[7] Krasheninnikov A V and Nordlund K 2005 Nucl. Instr. and Meth. B 228 21
[8] Krasheninnikov A V and Nordlund K 2005 Phys. Rev. B 71 245408
[9] Moura C S and Amaral L 2005 J. Phys. Chem. B 109 13515
[10] Moura C S and Amaral L 2007 Carbon 45 1802
[11] Zheng L P, Xu Z J, Wang C B, Zhu Z Y, Zhu D Z and Xia H H 2006 Chin. Phys. Lett. 23 2169
[12] Zheng L P, Zhu Z Y, Li Y, Zhu D Z and Xia H H 2008 Nucl. Instrum. Meth. B 266 849
[13] Zheng L P, Zhu Z Y, Li Y, Zhu D Z and Xia H H 2008 J. Phys. Chem. C 112 15204
[14] Zheng L P, Zhu Z Y, Li Y and Goodman F O 2010 Nucl. Instrum. Meth. B 268 120
[15] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnot S B 2002 J. Phys.: Condens. Matter 14 783
[16] Ziegler J F, Biersack J P and Littmark U The Stopping and Range of Ions in Matter . (Pergamon: New York, 1985)
[17] Kotakoski J, Krasheninnikov A V, Ma Y, Foster A S, Nordlund K and Nieminen R M 2005 Phys. Rev. B 71 205408
[18] Krasheninnikov A V, Miyamoto Y and Tománek D 2007 Phys. Rev. Lett. 99 016104
[19] Beardmore K M and Gronbech-Jensen N 1998 Phys. Rev. E 57 7278
[20] Xu Z J, Zhang W, Zhu Z Y, Ren C L, Li Y and Huai P 2009 J. Appl. Phys. 106 043501
[21] Xu Z J, Zhang W, Zhu Z Y and Huai P 2009 Nanotechnology 20 125706
[22] Lindhard J 1964 Phys. Lett. 12 126