摘要Using first-principles theory, we predict magnetic, electronic and optical properties in Fe-doped ZnO nanowires. The results show that ferromagnetic (FM) coupling of configuration V is the most stable, and the strong hybridization effect between Fe 3d and O 2p states is found near the Fermi level, and it is obvious that the ferromagnetic system is electron−spin polarization of 100% and half-metallic. Given antiferromagnetic (AFM) coupling, the system generates small spin polarization near the Fermi level, indicating metallicity. The magnetic moments mainly arise from Fe 3d orbitals. In addition, the results of optical properties show that the Fe-doped ZnO nanowires have apparent absorption peaks in the ultraviolet band and that there is a small red shift and a strong blue shift in the near and far ultraviolet band, indicating that Fe-doped ZnO nanowires are a type of magneto-optical materials with great promise.
Abstract:Using first-principles theory, we predict magnetic, electronic and optical properties in Fe-doped ZnO nanowires. The results show that ferromagnetic (FM) coupling of configuration V is the most stable, and the strong hybridization effect between Fe 3d and O 2p states is found near the Fermi level, and it is obvious that the ferromagnetic system is electron−spin polarization of 100% and half-metallic. Given antiferromagnetic (AFM) coupling, the system generates small spin polarization near the Fermi level, indicating metallicity. The magnetic moments mainly arise from Fe 3d orbitals. In addition, the results of optical properties show that the Fe-doped ZnO nanowires have apparent absorption peaks in the ultraviolet band and that there is a small red shift and a strong blue shift in the near and far ultraviolet band, indicating that Fe-doped ZnO nanowires are a type of magneto-optical materials with great promise.
[1] Ohno H 1998 Science 281 951
[2] Pan Z W, Dai Z R and Wang Z L 2001 Science 291 1947
[3] Jian W B et al 2006 Phys. Rev. B 73 233308
[4] Sluiter Marcel H F et al 2005 Phys. Rev. Lett. 94 187204
[5] KulkarFe J S et al 2006 Appl. Phys. A: Mater. Sci. Process. 85 277
[6] Chang Y Q et al 2003 Appl. Phys. Lett. 83 4020
[7] Wei A et al 2011 Chin. Phys. Lett. 28 080702
[8] Marcel H F S et al 2005 Phys. Rev. Lett. 94 187204
[9] Cui J B and Gibson U J 2005 Appl. Phys. Lett. 87 133108
[10] Singh S et al 2008 J. Appl. Phys. 103 07D108
[11] Polyakov A Y et al 2004 Mater. Sci. Semi. Process. 7 77
[12] Mandal S K et al 2006 Appl. Phys. Lett. 89 162502
[13] Xin M J et al 2008 Mater. Lett. 62 2717
[14] Zhang B et al 2008 Chin. Sci. Bull. 53 1639
[15] Limaye M V et al 2011 J. Solid State Chem. 184 391
[16] Clark S J et al 2005 Z. Kristallogr. 220 567
[17] Wang Q et al 2008 Phys. Rev. B 77 205411
[18] Yi J B et al 2008 Adv. Mater. 20 1170
[19] Wander A and Harrison N M 2000 Surf. Sci. Lett. 23 L342
[20] Zhang Z H et al 2006 Micron 37 229
[21] Kong Y C et al 2001 Appl. Phys. Lett. 78 407
[22] Chen T et al 2008 Nanotechnology 19 435711
[23] Xu J P et al 2010 Chin. Phys. Lett. 27 047803
[24] Twardowski A et al 1983 Sol. St. Comm. 48 845
[25] Kolodziejski L A et al 1986 J. Vac. Sci. Technol. B 4 58
[26] He Q B et al 2007 Chin. Phys. Lett. 24 3499