Synthesis and Properties of Magnetic Composites of Carbon Nanotubes/Fe Nanoparticle
XU Mei-Hua1,2, QI Xiao-Si1, ZHONG Wei1, YE Xiao-Juan1, DENG Yu1, AU Chaktong3, JIN Chang-Qing1, YANG Zai-Xing1, DU You-Wei1
1National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 2100932Department of Applied Physics, Nanjing University of Technology, Nanjing 2100093Chemistry Department, Hong Kong Baptist University, Hong Kong
Synthesis and Properties of Magnetic Composites of Carbon Nanotubes/Fe Nanoparticle
XU Mei-Hua1,2, QI Xiao-Si1, ZHONG Wei1, YE Xiao-Juan1, DENG Yu1, AU Chaktong3, JIN Chang-Qing1, YANG Zai-Xing1, DU You-Wei1
1National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 2100932Department of Applied Physics, Nanjing University of Technology, Nanjing 2100093Chemistry Department, Hong Kong Baptist University, Hong Kong
摘要Magnetic composites of carbon nanotubes (CNTs) are synthesized by the in situ catalytic decomposition of benzene at temperatures as low as 400°C over Fe nanoparticles (mean grain size = 26nm) produced by sol-gel fabrication and hydrogen reduction. The yield of CNT composite is up to about 3025% in a run of 6h. FE-SEM and HRTEM investigations reveal that one-dimensional carbon species are produced in a large quantity. A relatively high value of magnetization is observed for the composite due to the encapsulation of ferromagnetic Fe3C and/or α-Fe. The method is suitable for the mass-production of CNT composites that contain magnetic nanoparticles.
Abstract:Magnetic composites of carbon nanotubes (CNTs) are synthesized by the in situ catalytic decomposition of benzene at temperatures as low as 400°C over Fe nanoparticles (mean grain size = 26nm) produced by sol-gel fabrication and hydrogen reduction. The yield of CNT composite is up to about 3025% in a run of 6h. FE-SEM and HRTEM investigations reveal that one-dimensional carbon species are produced in a large quantity. A relatively high value of magnetization is observed for the composite due to the encapsulation of ferromagnetic Fe3C and/or α-Fe. The method is suitable for the mass-production of CNT composites that contain magnetic nanoparticles.
(High-resolution transmission electron microscopy (HRTEM))
引用本文:
XU Mei-Hua;QI Xiao-Si;ZHONG Wei;YE Xiao-Juan;DENG Yu;AUChaktong;JIN Chang-Qing;YANG Zai-Xing;DU You-Wei. Synthesis and Properties of Magnetic Composites of Carbon Nanotubes/Fe Nanoparticle[J]. 中国物理快报, 2009, 26(11): 116103-116103.
XU Mei-Hua, QI Xiao-Si, ZHONG Wei, YE Xiao-Juan, DENG Yu, AUChaktong, JIN Chang-Qing, YANG Zai-Xing, DU You-Wei. Synthesis and Properties of Magnetic Composites of Carbon Nanotubes/Fe Nanoparticle. Chin. Phys. Lett., 2009, 26(11): 116103-116103.
[1] Iijima S 1991 Nature 354 56 [2] Xu N, Ding J W, Chen H B and Ma M M 2009 Chin. Phys.Lett. 26 076102 [3] Qiu W, Kang Y L, Lei Z K, Qin Q H and Li Q 2009 Chin.Phys. Lett. 26 080701 [4] Baughman R H, Zakhidov A A and de Heer W A 2002 Science. 297 787 [5] Korneva G, Ye H H, Gogotsi Y, Halverson D, Friedman G,Bradley J C and Kornev K G 2005 Nano Lett. 5 879 [6] Thess A, Lee R, Nikolaev P, Dai H J, Petit P, Robert J, XuC H, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E,Tomanek D, Fischer J E and Smalley R E 1996 Science 273483 [7] Journet C, Maser W K, Bernier P, Loiseau A, delaChapelle ML, Lefrant S, Deniard P, Lee R and Fischer J E 1997 Nature 388 756 [8] Terranova M L, Sessa V and Rossi M 2006 Chem. Vap.Deposit. 12 315 [9] Yacam\'{an M J, Yoshida M M and Rend\'{on L M 1993 Appl. Phys. Lett. 62 202 [10] Piedigrosso P, Konya Z, Colomer J F, Fonseca A, VanTendeloo G and Nagy J B 2000 Phys. Chem. Chem. Phys. 2163 [11] Sarangi D and Karimi A 2003 Nanotechnology 14109 [12] Xie J N, Mukhopadyay K, Yadev J and Varadan V K 2003 Smart. Mater. Struct. 12 744 [13] Cheng J P, Zhang X B, Liu F, Tu J P, Ye Y, Ji Y J andChen C P 2003 Carbon 41 1965 [14] Cheng J P, Zhang X B, Tu H, Tao X Y, Ye Y and Liu F 2006 Mater. Chem. Phys. 95 12 [15] Ivanov V, Fonseca A, Nagy J B, Lucas A, Lambin P,Bernaerts D and Zhang X B 1995 Carbon 33 1727 [16] Fan Y Y, Li F, Cheng H M, Su G, Yu Y D and Shen Z H 1998 J. Mater. Res. 13 2342 [17] Cheng H M, Li F, Su G, Pan H Y, He L L, Sun X andDresselhaus M S 1998 Appl. Phys. Lett. 72 3282 [18] Tang N J, Zhong W, Gedanken A and Du Y W 2006 J.Phys. Chem. B 110 11772 [19] Tang N J, Zhong W, Au C T, Gedanken A, Yang Y and Du Y W2007 Adv. Funct. Mater. 17 1542 [20] Tang N J, Yang Y, Lin K J, Zhong W, Au C T and Du Y W2008 J. Phys. Chem. C 112 10061 [21] Kumar M and Ando Y 2003 Chem. Phys. Lett. 374521 [22] Lv R T, Kang F Y, Wang W X, Wei J Q, Gu J L, Wang K L andWu D H 2007 Carbon 45 1433 [23] Mahanandia P and Nanda K K 2008 Nanotechnology 19 155602 [24] Chai S P, Zein S H S and Mohamed A R 2007 DiamondRelat. Mater. 16 1656 [25] Rao A M, Richter E, Bandow S, Chase B, Eklund P C,Williams K A, Fang S, Subbaswamy K R, Menon M, Thess A, Smalley R E,Dresselhaus G and Dresselhaus M S 1997 Science 275 187 [26] Li W Z, Zhang H, Wang C Y, Zhang Y, Xu L W, Zhu K and XieS S 1997 Appl. Phys. Lett. 70 2684