Thermal Conductivity of Carbon Nanotubes Embedded in Solids
CAO Bing-Yang, HOU Quan-Wen
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084
Thermal Conductivity of Carbon Nanotubes Embedded in Solids
CAO Bing-Yang;HOU Quan-Wen
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084
摘要A carbon-nanotube-atom fixed and activated scheme of non-equilibrium molecular dynamics simulations is put forward to extract the thermal conductivity of carbon nanotubes (CNTs) embedded in solid argon. Though a 6.5% volume fraction of CNTs increases the composite thermal conductivity to about twice as much as that of the pure basal material, the thermal conductivity of NTs embedded in solids is found to be decreased by 1/8--1/5 with reference to that of pure ones. The decrease of the intrinsic thermal conductivity of the solid-embedded CNTs and the thermal interface resistance are demonstrated to be responsible for the results.
Abstract:A carbon-nanotube-atom fixed and activated scheme of non-equilibrium molecular dynamics simulations is put forward to extract the thermal conductivity of carbon nanotubes (CNTs) embedded in solid argon. Though a 6.5% volume fraction of CNTs increases the composite thermal conductivity to about twice as much as that of the pure basal material, the thermal conductivity of NTs embedded in solids is found to be decreased by 1/8--1/5 with reference to that of pure ones. The decrease of the intrinsic thermal conductivity of the solid-embedded CNTs and the thermal interface resistance are demonstrated to be responsible for the results.
[1] Shenogin S, Xue L P, Szisik R, Keblinski P and Cahill D G2004 J. Appl. Phys. 95 8136 [2]Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys.Rev. Lett. 87 215502 [3]Fujii M, Zhang X, Xie H Q, Ago H, Takahashi K, Ikuta T, AbeH and Shimizu T 2005 Phys. Rev. Lett. 95 065502 [4]Yu C, Shi L, Yao Z, Li D and Majumdar A 2005 NanoLett. 5 1842 [5]Pop E, Mann D, Wang Q, Goodson K and Dai H 2006 NanoLett. 6 96 [6]Wang Z L et al 2007 Appl. Phys. Lett. 91 123119 [7]Berber S, Kwon Y K and Tomanek D 2000 Phys. Rev.Lett. 84 4613 [8]Osman M A and Srivastava D 2001 Nanotechnology 12 21 [9]Maruyama S 2002 Physica B 323 193 [10]Yao Z H, Wang J S, Li B W and Liu G R 2005 Phys.Rev. B 71 085417 [11]Pan R Q, Xu Z J and Zhu Z Y 2007 Chin. Phys. Lett. 24 1321 [12]Choi S U S, Zhang Z G, Yu W, Lockwood F E and Grulke E A2001 Appl. Phys. Lett. 79 2252 [13]Biercuk M J et al 2002 Appl. Phys. Lett. 802767 [14]Kim Y A et al 2007 Appl. Phys. Lett. 90 093125 [15]Huxtable S T et al 2003 Nature Mater. 2 731 [16]Nan C W, Liu G, Lin Y and Li M 2004 Appl. Phys.Lett. 85 3549 [17]Chen T Y, Wen G and Liu W C 2005 J. Appl. Phys. 97 104312 [18]Deng F, Zheng Q S, Wang L F and Nan C W 2007 Appl.Phys. Lett. 90 021914 [19]Tersoff J 1988 Phys. Rev. Lett. 61 2879 [20]Brenner D W 1990 Phys. Rev. B 42 9458 [21]Tuzun R E, Noid D W, Sumpter B G and Merkle R C 1996 Nanotechnology 7 241 [22]Allen M P and Tildesley D J 1989 Computer Simulationof Liquids (New York: Oxford University Press) [23]Che J, Cagin T and Goddard III W A 2000 Nanotechnology 11 65 [24]Padgett C W and Brenner C W 2004 Nano Lett. 41051