Stability and Electronic Properties of Hydrogenated Zigzag Carbon Nanotube Focused on Stone–Wales Defect
PAN Li-Jun** , ZHANG Jie, CHEN Wei-Guang, TANG Ya-Nan
College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044
Abstract :We present a first-principles study of the chemisorption of hydrogen on a Stone–Wales (SW) defective carbon nanotube (10,0). The investigated configurations include four configurations covering single defects and double defects. One hydrogen dimer adsorption is energetically favored on bonds shared by carbon heptagon-heptagon for configurations with the defect parallel to the tube axis compared with the carbon pentagon-hexagon sites for ones with a slanted defect. This different behavior is also demonstrated for hydrogen dimer chain adsorption, the favored site for the former ones is through the defect, which is the nearest neighbor site to defect for the latter ones. It is found that the energy band gaps of hydrogenated configurations may be enlarged or decreased by altering the adsorption site or defect position. The semiconductor-to-metal transition may occur for configurations with the defect or defects parallel to the tube axis due to low electronic localization. Our results highlight the interest of the interaction of multi-factor system by providing a detailed bond and position picture of a hydrogenated defective carbon nanotube (10,0).
出版日期: 2015-02-26
:
61.46.Fg
(Nanotubes)
31.15.es
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
73.22.-f
(Electronic structure of nanoscale materials and related systems)
[1] Stone A J and Wales D J 1986 Chem. Phys. Lett. 128 501 [2] Monthioux M 2002 Carbon 40 1809 [3] Bockrath M, Liang W, Bozovic D, Hafner J H, Lieber C M, Tinkham M and Park H 2001 Science 291 283 [4] Maltezopoulos T, Kubetzka A, Morgenstern M, Wiesendanger R, Lemay S G and Dekker C 2003 Appl. Phys. Lett. 83 1011 [5] Miyamoto Y, Rubio A, Berber S, Yoon M and Tománek D 2004 Phys. Rev. B 69 121413 [6] Roh S, Lee J, Jang M, Shin M, Ahn J, Park T and Yi W 2010 J. Nanomater. 2010 398621 [7] Nardelli M B, Yakobson B I and Bernholc J 1998 Phys. Rev. Lett. 81 4656 [8] Shimada T, Shirasaki D and Kitamura T 2010 Phys. Rev. B 81 035401 [9] Ajayan P M, Ravikumar V and Charlier J C 1998 Phys. Rev. Lett. 81 1437 [10] Liew K M, He X Q and Wong C H 2004 Acta Mater. 52 2521 [11] Jensen P, Gale J and Blasé X 2002 Phys. Rev. B 66 193403 [12] Zhou L G and Shi S Q 2003 Appl. Phys. Lett. 83 1222 [13] Dinadayalane T C and Leszczynski J 2007 Chem. Phys. Lett. 434 86 [14] Pan B C, Yang W S and Yang J 2000 Phys. Rev. B 62 12652 [15] Ding F 2005 Phys. Rev. B 72 245409 [16] Ertekin E and Chrzan D C 2009 Phys. Rev. B 79 155421 [17] Picozzi S, Santucci S and Lozzi L 2004 J. Chem. Phys. 120 7147 [18] Chakrapani N, Zhang Y M, Nayak S K, Moore J A, Carroll D L, Choi Y Y and Ajayan P M 2003 J. Phys. Chem. B 107 9308 [19] Wang C, Zhou G, Liu H, Wu J, Qiu Y, Gu B L and Duan W 2006 J. Phys. Chem. B 110 10266 [20] Lu X, Chen Z and Schleyer P R 2005 J. Am. Chem. Soc. 127 20 [21] Dinadayalane T C, Murray J S, Concha M C, Politzer P and Leszczynshi J 2010 J. Chem. Theory Comput. 6 1351 [22] Yang H T, Chen J W, Yang L F and Dong J 2005 Phys. Rev. B 71 085402 [23] Lee G D, Wang C Z, Yu J, Yoon E, Hwang N M and Ho K M 2007 Phys. Rev. B 76 165413 [24] Azadi S, Moradian R and Shafaee A M 2010 Comput. Mater. Sci. 49 699 [25] Dinadayalane T C, Kaczmarek A, Lukaszewicz J and Leszczynski J 2007 J. Phys. Chem. C 111 7376 [26] Yang X B and Ni J 2006 Phys. Rev. B 74 195437 [27] Berber S and Tománek D 2009 Phys. Rev. B 80 075427 [28] Miller G P, Kintigh J, Kim E, Weck P F, Berber S and Tománek D 2008 J. Am. Chem. Soc. 130 2296 [29] Zhang A D, Wang D L and Hou D Y 2012 Comput. Theor. Chem. 999 121 [30] Tsetseris L and Pantelides S T 2011 Appl. Phys. Lett. 99 143119 [31] Lee K W and Lee C E 2013 Phys. Rev. B 87 235119 [32] Kim K S, Park K A, Kim H J et al 2003 J. Korean Phys. Soc. 42 S137 [33] Zhang G, Qi P, Wang X et al 2006 J. Am. Chem. Soc. 128 6026 [34] Pan L J, Chen W G, Zhang R Q, Hu X and Jia Y 2010 Chin. Phys. Lett. 27 077304 [35] Blase X, Benedict L X, Shirley E L and Louie S G 1994 Phys. Rev. Lett. 72 1878 [36] Pan L J, Shen Z G, Jia Y and Dai X Q 2012 Physica B 407 2763 [37] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048 [38] Ordejón P, Artacho E and Soler J M 1996 Phys. Rev. B 53 R10441 [39] Sánchez-Portal D, Ordejón P, Artacho E and Soler J M 1997 Int. J. Quantum Chem. 65 453 [40] Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejón P and S ánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745 [41] Boys F S and Bernardi F 2002 Mol. Phys. 100 65 [42] Park C J, Kim Y H and Chang K J 1999 Phys. Rev. B 60 10656
[1]
. [J]. 中国物理快报, 2022, 39(3): 36101-036101.
[2]
. [J]. 中国物理快报, 2018, 35(3): 36101-.
[3]
. [J]. 中国物理快报, 2016, 33(05): 56701-056701.
[4]
. [J]. 中国物理快报, 2014, 31(04): 46301-046301.
[5]
. [J]. 中国物理快报, 2013, 30(11): 113402-113402.
[6]
ZHANG Fu-Chun**;ZHANG Wei-Hu;DONG Jun-Tang;ZHANG Zhi-Yong
. First-Principles Study of Fe-Doped ZnO Nanowires [J]. 中国物理快报, 2011, 28(12): 126102-126102.
[7]
LI Yong;ZHENG Li-Ping;ZHANG Wei**;XU Zi-Jian**;REN Cui-Lan;HUAI Ping;ZHU Zhi-Yuan
. Charge and Mass Effects on Low Energy Ion Channeling in Carbon Nanotubes [J]. 中国物理快报, 2011, 28(6): 66101-066101.
[8]
XU Mei-Hua;QI Xiao-Si;ZHONG Wei;YE Xiao-Juan;DENG Yu;AUChaktong;JIN Chang-Qing;YANG Zai-Xing;DU You-Wei. Synthesis and Properties of Magnetic Composites of Carbon Nanotubes/Fe Nanoparticle [J]. 中国物理快报, 2009, 26(11): 116103-116103.
[9]
ZHANG Jing-Xiang;LI Hui;ZHANG Xue-Qing;LIEW Kim-Meow. Electric Conductivity of Phosphorus Nanowires [J]. 中国物理快报, 2009, 26(5): 56101-056101.
[10]
ZHANG Fu-Chun;;ZHANG Zhi-Yong;ZHANG Wei-Hu;;YAN Jun-Feng;YUN Jiang-Ni. First-Principles Study on Magnetic Properties of V-Doped ZnO Nanotubes [J]. 中国物理快报, 2009, 26(1): 16105-016105.
[11]
PENG Bei;Horacio D. Espinosa. This paper has been withdrawn by the first author due to misconduct, see Chin. Phys. Lett. 26, 079901, 2009 In Situ Tests of Multiwalled Carbon Nanotubes with Strength Close to Theoretical Predictions [J]. 中国物理快报, 2009, 26(1): 16104-016104.
[12]
CHEN Yu-Li;LIU Bin;YIN Ya-Jun;HUANG Yong-Gang;HWUANG Keh-Chih. Nonlinear Deformation Processes and Damage Modes of Super Carbon Nanotubes with Armchair-Armchair Topology [J]. 中国物理快报, 2008, 25(7): 2577-2580.
[13]
CAO Bing-Yang;HOU Quan-Wen. Thermal Conductivity of Carbon Nanotubes Embedded in Solids [J]. 中国物理快报, 2008, 25(4): 1392-1395.
[14]
YUAN Peng-Fei;DING Ze-Jun;JU Xin. Theoretical Study on Structural and Elastic Properties of ZnO Nanotubes [J]. 中国物理快报, 2008, 25(3): 1030-1033.
[15]
S. Eren San;Mustafa Okutan;Oguz Koysal;Yusuf Yerli. Carbon Nanoparticles in Nematic Liquid Crystals [J]. 中国物理快报, 2008, 25(1): 212-215.