摘要Spin-dependent Andreev reflection and spin polarization through a diluted magnetic semiconductor quantum wire coupled to normal metallic and superconductor electrodes are investigated using scattering theory. When the spin--orbit coupling is considered, more Andreev conductance steps appear at the same Fermi energy. Magnetic semiconductor quantum wire separates the spin-up and spin-down electrons. The Fermi energy, at which different-spin-state electrons begin to separate, becomes lower due to the effect of the spin--orbit interaction. The spin filter effect can be measured more easily by investigating the Andreev conductance than by investigating the normal conductance.
Abstract:Spin-dependent Andreev reflection and spin polarization through a diluted magnetic semiconductor quantum wire coupled to normal metallic and superconductor electrodes are investigated using scattering theory. When the spin--orbit coupling is considered, more Andreev conductance steps appear at the same Fermi energy. Magnetic semiconductor quantum wire separates the spin-up and spin-down electrons. The Fermi energy, at which different-spin-state electrons begin to separate, becomes lower due to the effect of the spin--orbit interaction. The spin filter effect can be measured more easily by investigating the Andreev conductance than by investigating the normal conductance.
LI Yu-Xian. Spin Polarization and Andreev Conductance through a Diluted Magnetic Semiconductor Quantum Wire with Spin--Orbit Interaction[J]. 中国物理快报, 2008, 25(10): 3739-3741.
LI Yu-Xian. Spin Polarization and Andreev Conductance through a Diluted Magnetic Semiconductor Quantum Wire with Spin--Orbit Interaction. Chin. Phys. Lett., 2008, 25(10): 3739-3741.
[1] Kane B E 1998 Nature 393 133 [2]Zhang X W, Fan W J, Li S S, and Xia J B 2007 Phys.Rev. B 75 205331 [3] Li S S, Chang K, Xia J B and Hirose K 2003 Phys.Rev. B 68 245306 [4] Chang K, Li S S and Xia J B 2004 Phys. Rev. B 69 235203 [5] Ji Y et al 2001 Phys. Rev. Lett. 86 5585 [6] Blonder G E, Tinkham M and Klapwijk T M 1982 Phys.Rev. B 25 4515 [7] Beenakker C W J 1997 Rev. Mod. Phys. 69 731 [8] Cao X, Shi Y, Song X, Zhou S and Chen H 2004 Phys.Rev. B 70 235341 [9] Li Y X, Choi H Y, Lee H W and Liu J J 2007 J. Appl.Phys. 101 103918 [10] Beenakker C W J 1992 Phys. Rev. B 46 12841 [11] Kang K 1998 Phys. Rev. B 58 9641 [12] Bychkov Y A and Rashba E I 1984 Sov. Phys. JETP 39 78 [13]Pershin Y V, Nesteroff J A and Privman V 2004 Phys.Rev. B 69 121306(R) [14] Li Y X, Guo Y and Li B Z 2005 Phys. Rev. B 72075321 [15] B\"uttiker M 1990 Phys. Rev. B 41 R7906 [16] Datta S 1995 Electronic Transport in MesoscopicSystems (Cambridge: Cambridge University Press)